
ASQ Quality Press
Milwaukee, Wisconsin

Statistical Process 
Control for the 
FDA-Regulated  

Industry

Manuel E. Peña-Rodríguez



American Society for Quality, Quality Press, Milwaukee 53203
© 2013 by ASQ
All rights reserved. Published 2013
Printed in the United States of America
19  18  17  16  15  14  13        5  4  3  2  1

Library of Congress Cataloging-in-Publication Data

Pena-Rodriguez, Manuel E.
 Statistical process control for the FDA-regulated industry / Manuel E. Pena-Rodriguez.
  pages cm
 Includes bibliographical references and index.
 ISBN 978-0-87389-852-2 (hardcover : alk. paper)
 1. Process control—Statistical methods. 2. Manufacturing processes—United States— 
 Quality control. I. Title.
 
 TS156.8.P45 2013
 658.5072'7—dc23 2013003376

ISBN: 978-0-87389-852-2

No part of this book may be reproduced in any form or by any means, electronic,  
mechanical, photocopying, recording, or otherwise, without the prior written permission  
of the publisher.

Publisher: William A. Tony
Acquisitions Editor: Matt T. Meinholz
Project Editor: Paul Daniel O’Mara
Production Administrator: Randall Benson

ASQ Mission: The American Society for Quality advances individual, organizational,  
and community excellence worldwide through learning, quality improvement, and  
knowledge exchange.

Attention Bookstores, Wholesalers, Schools, and Corporations: ASQ Quality Press  
books, video, audio, and software are available at quantity discounts with bulk  
purchases for business, educational, or instructional use. For information, please  
contact ASQ Quality Press at 800-248-1946, or write to ASQ Quality Press,  
P.O. Box 3005, Milwaukee, WI 53201-3005.

To place orders or to request ASQ membership information, call 800-248-1946. Visit our  
website at http://www.asq.org/quality-press.

 Printed on acid-free paper



xvii

Over the centuries, the quality of products and services has been one of 
the common characteristics of successful organizations. The term “quality” 
has evolved through the generations. Philosophies such as quality control, 
quality assurance, and total quality management have been recognized 
at different times. Nevertheless, all these philosophies share something 
in common: the use of statistical process control (SPC) to achieve higher 
 levels of excellence. The concept of SPC applies to any type of industry: 
automotive, textiles, pharmaceutical, biologics, medical devices, electron-
ics, aerospace, banking, educational services, and so on.

With the advances in technology, more people are immersed in the 
SPC arena every day. Computer software such as Minitab, Statgraphics, 
SigmaXL, and others, make the analysis of data a simpler task. However, 
most of the questions that people ask me every day are not about how to per-
form the analysis once the person determines which tool to use, but about 
which is the appropriate tool to use for each specific situation.

The focus of this book is to understand and apply the different SPC 
tools in a company regulated by the Food and Drug Administration (FDA): 
those that manufacture pharmaceutical products, biologics, medical 
devices, food, cosmetics, and so on. The book is not intended to provide 
an intensive course in statistics; instead, it is intended to provide a how-to 
guide about the application of the diverse array of statistical tools available 
to analyze and improve the processes in an organization regulated by FDA. 
This book is aimed at engineers, scientists, analysts, technicians, managers, 
supervisors, and all other professionals responsible to measure and improve 
the quality of their processes. Although the examples and case studies pre-
sented throughout the book are based on situations found in an organization 
regulated by FDA, the book can also be used to understand the application 
of those tools in any type of industry.

Preface



xviii  Preface

The book comprises 12 chapters and four appendixes. In Chapter 1, 
the regulatory importance of SPC is presented. Some of the FDA regu-
lations and guidances are analyzed in terms of the agency’s expectations 
about the use of statistical process control tools. Also, some of the inter-
national standards applicable to the life sciences industry are analyzed for 
SPC requirements. Chapter 2 presents various instances in which FDA has 
issued observations about the misuse of SPC tools. Also, the concepts of 
SPC and corrective action and preventive action (CAPA) are integrated in 
this chapter.

Then, Chapter 3 presents the concept of process variation. The 
 common causes and special causes of variation are explained in detail. 
Chapter 4 presents some basic statistical concepts, such as types of data, 
sampling, descriptive statistics, the normal distribution, and so on. Next, 
Chapter 5 presents some of the most useful graphical tools with which to 
start analyzing processes. Tools such as the histogram, dot plot, box plot, 
Pareto diagram, and others, as applied to several FDA-regulated industries, 
are presented in the chapter.

In Chapter 6, one of the most important but less frequently used tools 
is presented: the measurement systems analysis. In this chapter, the impor-
tance of addressing measurement system variability prior to implementing 
any other improvement initiative is thoroughly explored. Chapter 7 presents 
the concept of process capability. Here, we study the different indices used 
to measure capability: Cp, Cpk, Pp, and Ppk. Then, in Chapter 8, an intro-
duction to hypothesis testing is presented. Several tools used to compare 
means, medians, and variances are introduced for normal and  nonnormal 
data. Many examples are provided detailing the use of these tools in an 
FDA-regulated organization.

Chapter 9 explains how to use regression analysis to understand the 
relationship between input variables and output variables. Then, Chapter 
10 provides a brief introduction to design of experiments and its applica-
tion in an FDA-regulated environment. The concepts of full factorial and 
fractional factorial experiments are introduced in this chapter. In Chapter 
11, control charts are introduced as a tool to facilitate process control. The 
control charts for variable data and attribute data are presented, along with 
some applications. Finally, Chapter 12 presents a summary of the appropri-
ate tools necessary to reach a state of statistical process control.

In order to visualize the difference between attribute and variable data, 
Appendix A shows some different tools for analyzing attribute or variable 
data, including control charts, probability distributions, sampling plans, and 
measurement instruments for each type of data. Appendix B presents many 
graphical and statistical tools to be used for different situations, and a ref-
erence to the section in the book in which the tool can be found.  Appendix 
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C shows an example of the basic statistics to apply for an annual product 
review or management review. Finally, Appendix D shows some of the most 
commonly used hypothesis tests in an easy-to-understand tabular format.

By means of this book, I expect that the reader will obtain a better 
understanding of some of the statistical tools available to control their pro-
cesses. Also, I expect the reader to be encouraged to study, with a greater 
level of detail, each of the statistical tools presented throughout the book. 
The content of this book is the result of almost 20 years of experience in 
the application of statistics in various industries, and the combination of my 
engineering and law educational backgrounds, specifically through provid-
ing consulting services to dozens of FDA-regulated organizations.
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1

1
Regulatory Importance of 
Statistical Process Control

1.1 OveRvIew

The Food and Drug Administration (FDA) is the administrative agency in 
the United States responsible for protecting the public health by assuring 
the safety, efficacy, and security of human and veterinary drugs, biologi-
cal products, medical devices, our nation’s food supply, cosmetics, prod-
ucts that emit radiation, and tobacco products. FDA is also responsible for 
advancing the public health by helping to speed innovations that make med-
icines and foods more effective, safer, and more affordable, and helping the 
public get the accurate, science-based information they need to use medi-
cines and foods to improve their health.1

The Federal Food, Drug, and Cosmetic Act (FD&C Act) is a federal law 
enacted by Congress. It and other federal laws establish the legal framework 
within which FDA operates. The FD&C Act can be found in the United 
States Code (USC), which contains all general and permanent U.S. laws, 
beginning at 21 USC §301. FDA develops regulations based on the laws set 
forth in the FD&C Act or other laws under which FDA operates. FDA fol-
lows the procedures required by the Administrative Procedure Act (APA), 
another federal law, to issue FDA regulations. This typically involves a pro-
cess known as “notice and comment rulemaking” that allows for public 
input on a proposed regulation before FDA issues a final regulation. FDA 
regulations are also federal laws, but they are not part of the FD&C Act. 
FDA regulations can be found in Title 21 of the Code of Federal Regula-
tions (CFR).2 FDA follows the procedures required by its “Good Guidance 
Practice” regulation to issue FDA guidance. FDA guidance describes the 
agency’s current thinking on a regulatory issue. Guidance is not legally 
binding on the public or FDA. The Good Guidance Practice regulation can 
be found at 21 CFR 10.115.3



2  Chapter One

While regulations are legally enforceable, guidances do not bind the 
companies. However, not following a guidance might result in a misinter-
pretation of the regulation; consequently, not following a guidance could 
have regulatory consequences.

1.2 PROCeSS COntROl wIthIn the 
COde Of fedeRal RegulatIOnS

Several sections within Title 21 of the Code of Federal Regulations mention 
the concept of process controls. I will focus the discussion on two specific 
sections of Title 21: the section related to finished pharmaceutical products4 
and the section related to medical devices.5 It is important to understand 
that regulations are not intended to provide a specific way to achieve pro-
cess controls. Regulations provide the minimum requirements. For instance, 
the regulation for finished pharmaceutical products states that:

The regulations in this part contain the minimum current good 
manufacturing practice for preparation of drug products for 
administration to humans or animals.6

The regulation for medical devices establishes that:

. . . This part establishes basic requirements applicable to manu-
facturers of finished medical devices.7

Both regulations explicitly state that requirements established therein are 
the minimum that the manufacturer must accomplish; they are not intended 
to be a “one-size-fits-all” type of requirement. Let us start with the process 
controls within the regulation for finished pharmaceutical products.

1.2.1 Current good Manufacturing Practices  
(21 CfR 211)

Published in 1978, the current Good Manufacturing Practices (cGMP) 
provide a framework to control finished pharmaceutical processes. Con-
trol over the processes is important so that the product meets standards of 
safety, efficacy, purity, and stability. Section 211.22 establishes the respon-
sibilities of the quality control unit (QCU). This section states that:

There shall be a quality control unit that shall have the responsibil-
ity and authority to approve or reject all components, drug prod-
uct containers, closures, in-process materials, packaging material, 
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labeling, and drug products, and the authority to review produc-
tion records to assure that no errors have occurred or, if errors 
have occurred, that they have been fully investigated. The quality 
control unit shall be responsible for approving or rejecting drug 
products manufactured, processed, packed, or held under contract 
by another company.8

In order to comply with this section of the regulation, the manufacturer 
shall establish written procedures, which shall be followed. It should be 
noted that the QCU is responsible to establish all process controls, monitor 
those process controls, and take actions whenever those process controls 
are not followed. In other words, the QCU becomes the “arms and eyes” 
of FDA within the manufacturer. One of the best examples of this applica-
tion is found in section 211.100, “Written procedures; deviations,” which 
states that:

There shall be written procedures for production and process con-
trol designed to assure that the drug products have the identity, 
strength, quality, and purity they purport or are represented to pos-
sess. Such procedures shall include all requirements in this sub-
part. These written procedures, including any changes, shall be 
drafted, reviewed, and approved by the appropriate organizational 
units and reviewed and approved by the quality control unit.9

As noted, two key elements in establishing process controls in a pharma-
ceutical manufacturing environment, as established by the regulations, are 
the appointment of a quality control unit and the development of written 
procedures.

1.2.2 Quality System Regulation (21 CfR 820)

Published in 1996, the current Quality System Regulation (QSR) provides 
a framework to control medical device processes. Although the regulation 
related to pharmaceutical products (21 CFR 211) does not have a specific 
section dedicated solely to statistical process control, the regulation related 
to medical devices addresses SPC explicitly. Section 820.250, “Statistical 
techniques,” establishes that:

(a) Where appropriate, each manufacturer shall establish and 
maintain procedures for identifying valid statistical techniques 
required for establishing, controlling, and verifying the accept-
ability of process capability and product characteristics.
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(b) Sampling plans, when used, shall be written and based 
on a valid statistical rationale. Each manufacturer shall estab-
lish and maintain procedures to ensure that sampling methods are 
adequate for their intended use and to ensure that when changes 
occur the sampling plans are reviewed. These activities shall be 
documented.10

Furthermore, section 820.100, “Corrective and preventive action,” states 
that: 

(a) Each manufacturer shall establish and maintain proce-
dures for implementing corrective and preventive action. The pro-
cedures shall include requirements for:

(1) Analyzing processes, work operations, concessions, qual-
ity audit reports, quality records, service records, complaints, 
returned product, and other sources of quality data to identify 
existing and potential causes of nonconforming product, or other 
quality problems. Appropriate statistical methodology shall be 
employed where necessary to detect recurring quality problems.11

As may be noted, the regulation for medical devices explicitly establishes 
the use of statistical techniques for process control. It does not prescribe 
any specific statistical tool or technique, but establishes that the technique 
used must be “valid.” Furthermore, the regulation also establishes that sam-
pling must have a “valid statistical rationale.” In both cases, “valid” means 
that tools used must be acceptable, reasonable, and appropriate to the situa-
tion at hand. So, the right tool must be used for each situation. That is basi-
cally one of the goals of this book: to allow the reader to identify which of 
the available statistical tools and techniques is the most appropriate for each 
situation. Also, the regulation for medical devices has a section that defines 
the corrective and preventive action process. It establishes the importance 
of analyzing data to identify existing and potential sources of nonconform-
ing product. This could be achieved by the use of the appropriate statistical 
tools and techniques.

In summary, the regulations for finished pharmaceutical products and 
medical devices establish the need to control the processes. The regulation 
for finished pharmaceutical products does not have a specific section for 
statistical techniques as the regulation for medical devices does. However, 
it is important to recognize that, although there is a regulation for finished 
pharmaceutical products and a regulation for medical devices, they com-
plement each other. That is, we need to look at both from a holistic point 
of view. Let us turn our attention to another set of documents published by 
FDA: the guidances.
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1.3 PROCeSS COntROl wIthIn the 
fda guIdanCeS

As mentioned in Section 1.1, regulations are legally enforceable require-
ments, while guidances represent the agency’s current thinking on a certain 
topic. However, not following a guidance might result in a misinterpretation 
of the regulation, which, in turn, can carry regulatory consequences. FDA 
frequently publishes guidances to clarify gaps in the regulations. There are 
many guidances that consider process controls. However, we will focus our 
attention to three of those guidances:

•	 Quality System Approach to Pharmaceutical Current Good 
Manufacturing Practices

•	 Investigating Out-of-Specification (OOS) Test Results for  
Phamaceutical Production

•	 Process Validation: General Principles and Practices

Our goal is to understand some of the requirements pertaining to process 
control in those guidances and to encourage the reader to look at the appro-
priate guidances published by FDA. By studying and applying the guid-
ances to our processes, we can fill the gaps produced by a misinterpretation 
of the regulations.

1.3.1 Quality System approach to Pharmaceutical 
cgMP Regulations

In 2006, FDA published a guidance titled Quality System Approach to 
Pharmaceutical Current Good Manufacturing Practices. In one section of 
the guidance, FDA establishes that:

Under a quality system, trends should be continually identified 
and evaluated. One way of accomplishing this is the use of sta-
tistical process control. The information from trend analyses can 
be used to continually monitor quality, identify potential vari-
ances before they become problems, bolster data already collected 
for the annual review, and facilitate improvement throughout the 
product life cycle. Process capability assessment can serve as a 
basis for determining the need for changes that can result in pro-
cess improvements and efficiency.12

The guidance recommends the use of statistical process control for pro-
cess monitoring on a continuous basis. It is interesting to note that terms 
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such as “trend analysis,” “potential variances,” and “process capability” are 
mentioned in the guidance. Those terms, and their application to an FDA-
regulated organization, will be discussed in greater detail throughout the 
upcoming chapters of this book.

1.3.2 Investigating Out-of-Specification (OOS) test 
Results for Pharmaceutical Production

An interesting application of the use of averages is presented in the 2006 
FDA Guidance titled Investigating Out-of-Specification (OOS) Test Results 
for Pharmaceutical Production. Section C.1.a establishes that:

Averaging data can be a valid approach, but its use depends upon 
the sample and its purpose. For example, in an optical rotation test, 
several discrete measurements are averaged to determine the opti-
cal rotation for a sample, and this average is reported as the test 
result. If the sample can be assumed to be homogeneous, (i.e., an 
individual sample preparation designed to be homogenous), using 
averages can provide a more accurate result. In the case of micro-
biological assays, the U.S. Pharmacopeia (USP) prefers the use 
of averages because of the innate variability of the biological test 
system.13

The use of averages as a measure of central tendency will be covered later 
in the book, as well as other measures such as the median and the mode. 
The advantages and disadvantages of using the average depending on the 
shape of the distribution will also be discussed in Chapter 4.

1.3.3 Process validation: general Principles  
and Practices

In January 2011, FDA published a new guidance about process valida-
tion. Throughout the guidance it is established that process validation for 
drugs (finished pharmaceuticals and components) is a legally enforceable 
requirement under section 501(a)(2)(b) of the FD&C Act (21 USC 351), 
which states the following:

A drug shall be deemed to be adulterated if the methods used 
in, or the facilities or controls used for, its manufacture, process-
ing, packing, or holding do not conform to or are not operated 
or administered in conformity with current good manufacturing 
practice to assure that such drug meets the requirements of this 
Act as to safety and has the identity and strength, and meets the 
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quality and purity characteristics, which it purports or is repre-
sented to possess.14

The process validation guidance establishes that process knowledge and 
understanding are the basis for establishing an approach to process con-
trol for each unit operation and the process overall. Strategies for process 
control can be designed to reduce input variation, adjust for input variation 
during manufacturing (and so reduce its impact on the output), or combine 
both approaches. The guidance states that:

Process controls address variability to assure quality of the prod-
uct. Controls can consist of material analysis and equipment mon-
itoring at significant processing points [§211.110(c)]. Decisions 
regarding the type and extent of process controls can be aided by 
earlier risk assessments, then enhanced and improved as process 
experience is gained. FDA expects controls to include both exami-
nation of material quality and equipment monitoring.15

1.4 PROCeSS COntROl wIthIn 
InteRnatIOnal guIdanCeS  

and StandaRdS

1.4.1 ICh Q10

The International Conference on Harmonization of Technical Require-
ments for Registration of Pharmaceuticals for Human Use (ICH) is a unique 
project that brings together the regulatory authorities of Europe, Japan, and 
the United States, and experts from the pharmaceutical industry in the three 
regions, to discuss scientific and technical aspects of product authoriza-
tion. Their purpose is to make recommendations on ways to achieve greater 
harmonization in the interpretation and application of technical guidelines 
and requirements for product authorization.16 ICH Q10 “Pharmaceutical 
Quality System” was adopted in June 2008. It describes one comprehensive 
approach to an effective pharmaceutical quality system that is based on ISO 
concepts, includes applicable good manufacturing practice (GMP) regula-
tions, and complements ICH Q8 “Pharmaceutical Development” and ICH 
Q9 “Quality Risk Management.” ICH Q10 is a model for a pharmaceutical 
quality system that can be implemented throughout the different stages of a 
product life cycle. Much of the content of ICH Q10 applicable to manufac-
turing sites is currently specified by regional GMP requirements. ICH Q10 
is not intended to create any new expectations beyond current  regulatory 
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requirements. Consequently, the content of ICH Q10 that is additional to 
current GMP requirements is optional.

ICH Q10 establishes that: 

Pharmaceutical companies should plan and execute a system for 
the monitoring of process performance and product quality to 
ensure a state of control is maintained. An effective monitoring 
system provides assurance of the continued capability of processes 
and controls to meet product quality and to identify areas for con-
tinual improvement.17

1.4.2 ISO 13485:2003 Standard

Main non–United States regulations (for example, European Community, 
Canada, and Japan) for medical devices are basically harmonized with 
the ISO 13485:2003 standard Medical devices—Quality management 
 systems—Requirements for regulatory purposes. Canada has adopted ISO 
13485:2003 as a Canadian national standard (CAN/CSA-ISO 13485:2003); 
in Europe, it has been adopted as EN ISO 13485:2003. The use of EN ISO 
13485:2003 is not mandatory as a quality system standard, but any required 
system must be equivalent to or better than EN ISO 13485:2003.18

Section 8.4 (Analysis of data) of ISO 13485:2003, which is similar to 
21 CFR §820.250 previously mentioned, establishes that:

The organization shall establish documented procedures to deter-
mine, collect and analyze appropriate data to demonstrate the suit-
ability and effectiveness of the quality management system and to 
evaluate if improvement of the effectiveness of the quality man-
agement system can be made. This shall include data generated as 
a result of monitoring and measurement and from other relevant 
sources. The analysis of data shall provide information relating to: 
(a) feedback; (b) conformity to product requirements; (c) charac-
teristics and trends of processes and products including opportuni-
ties for preventive action; and (d) suppliers.19

It can be noted that section 8.4 of ISO 13485:2003 is a perfect complement 
to the subparts about statistical techniques and about corrective and preven-
tive actions within 21 CFR 820.
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1.5 SuMMaRy

FDA is the administrative agency responsible to regulate manufacturers 
of finished pharmaceutical products, food, medical devices, tobacco, cos-
metics, and other products that might have an impact on the health of the 
American population. There are many documents FDA publishes in order 
to achive that goal; some of the most important ones are the regulations 
and the guidances. While regulations are legally binding, guidances are  
just the current thinking of the agency on certain topics. However, not 
 following a guidance can result in a misinterpretation of the regulation, 
causing legal consequences. FDA also relies on some international regu-
latory bodies for offshore operations. Some of these regulators assess the 
adequacy of the quality systems using international standards, such as  
ISO 13485:2003.

As can be seen throughout all these documents (regulations, guid-
ances, international standards, and so on), process monitoring is an impor-
tant element of any quality system. The tools presented in this book will 
assist organizations in monitoring quality on a continuous basis to improve 
their performance. The next chapter presents some observations issued by 
FDA to organizations about the application or misapplication of SPC tools.
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2
SPC and the Life Sciences 

Regulated Industry

2.1 OveRvIew

SPC tools can be used in any environment where a process needs to be 
monitored in order to be improved. In an FDA-regulated industry, monitor-
ing processes in a continuous way is of paramount importance because the 
product in this kind of industry impacts human health. Quality can not be 
inspected into a product; it must be built into the product. Concerned about 
the lack of use (in some cases) and misuse (in other cases) of statistical 
tools, FDA is compelling companies to embrace a quality system approach 
within their manufacturing environment. 

2.2 ReCent ObSeRvatIOnS  
abOut MISuSe Of StatIStICaL 

PROCeSS COntROL

Performing a search on FDA’s Warning Letters web page using the term 
“statistical control,” we find that more than 190 Warning Letters in which 
that term was mentioned have been issued during the past 10 years. Although 
most of them have been issued to medical device companies (specifically 
because of the existence of section 820.250, “Statistical techniques”), there 
are still many Warning Letters issued to pharmaceutical sites. What follows 
are excerpts of some of those Warning Letters where observations about 
misuse of statitistical tools have been issued.

In August 2012, a Warning Letter was issued to a pharmaceutical com-
pany in Illinois. During its inspection, FDA found that no procedure was 
established to determine what is considered a trend. Specifically, the Warn-
ing Letter states in observation #6:
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Failure to adequately analyze service reports with appropriate 
statistical methodology in accordance with 21 CFR 820.100, as 
required by 21 CFR 820.200(b). Specifically, your procedure enti-
tled “Servicing” [SOP048, Rev. (b)(4)], fails to provide a process 
for analyzing service reports based on a defined statistical meth-
odology to identify quality issues or trends.

We have reviewed your firm’s response and concluded it is not 
adequate. Your firm did not provide details or documents defin-
ing a process for trending and whether the existing servicing pro-
cedure would be updated. Further, your firm did not provide plans 
to retrospectively analyze existing service reports to ensure they 
do not represent quality issue trends requiring attention; and, your 
firm did not identify actions it would take when quality trends are 
identified.1

On April 27, 2012, a Warning Letter was issued to a pharmaceutical com-
pany in Mexico. During the inspection, FDA found that no procedure was 
established to monitor the performance of the critical inputs that impact the 
variability of the product. Specifically, the Warning Letter states in obser-
vation #2:

Your firm has not established written procedures to monitor the 
output and to validate the performance of those manufacturing 
processes that may be responsible for causing variability in the 
characteristics of in-process material and the drug product [21 
C.F.R. §211.110(a)]. 

For example, you did not perform adequate in-process tests 
for the Children’s XL-3 Chewable Tablets after the (b)(4) of the 
production runs for lots # A136, A137, and A138 to assure the pro-
cess remains in a state of control throughout the run. In addition, 
you failed to follow your procedure INS-05-01, entitled “Con-
troles en Proceso” section 8.1.2.2, approved on January 21, 2010, 
which requires (b)(4) samples be taken at the (b)(4) of the (b)(4) 
operation. 

In your response to this letter please include provisions for 
frequent sampling of tablets throughout the (b)(4) operation, and 
include a strong scientific and quality assurance rationale for 
your in-process sampling and testing approach (e.g., including an 
understanding of variability in the process and use of suitable sta-
tistical procedures). In addition, please review all in-process test 
results for products distributed to the U.S. within expiry, and pro-
vide a risk assessment on all lots for which your firm can  provide 
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no  evidence that you performed adequate in-process tests and 
obtained results that support release of your drug products.2

An observation for not complying with 21 CFR 820.250 was also made by 
FDA to a medical device company in Canada on December 20, 2011. In this 
case, the observation was about not using a statistical rationale for certain 
procedures. Observation #4 of the Warning Letter stated:

Failure to adequately establish and maintain procedures for iden-
tifying valid statistical techniques required for establishing, con-
trolling, and verifying the acceptability of process capability and 
product characteristics, as required by 21 CFR 820.250(a). For 
example:

(a) Your firm provided WP 5 QC Procedures for ELISA & 
CLIA Kits and Components Version 3.0, which requires (b)(4) for 
final acceptance testing for kit release. The determination of (b)(4) 
was not based on a statistical rationale.

(b) The (b)(4) is also described in WP 5 QC Procedures for 
ELISA & CLIA Kits and Components Version 3.0 and it is not 
based on statistical rationale.

(c) The design project for the PRA test kits (7.3.6 Design 
and Development Validation File Name: 7.3.6-v2.doc Version 
2.0 Effective: 1/8/2010 and WP 4 General Protocol for R&D of 
ELISA systems File Name: WP 4-v2.doc Version 2.0 Effective: 
1/8/2010) did not include a statistical rationale for the verification 
and validation testing by the firm.3

Sampling is one of the most questionable items whenever FDA issues an 
observation about the misuse of statistical tools. During the search within 
FDA’s website, I found some Warning Letter observations due to inappro-
priate sampling. For example, an observation within the Warning Letter 
dated January 14, 2010, issued to a pharmaceutical company in New  Jersey, 
stated:

In addition, Section 5.4.2, Sampling Requirements, in your Pro-
cess Validation Protocol, PVP-2000M-122T-04, states that (b)(4) 
tablets should be collected at (b)(4) for analytical testing. However, 
10 tablets were collected from 14 sampling locations for a total 
of 140 tablets in lot S0908003. Your response does not address 
this apparent deviation from your protocol. Also, be advised that 
the degree of validation sampling (e.g., number and frequency) 
and testing should be more extensive (than routine production) in 
order to provide sufficient statistical confidence of quality within 



14  Chapter Two

a batch and between batches. Please address your confidence level 
when sampling a total of 140 tablets from a lot of (b)(4) tablets 
(protocol batch size).4

Another observation related to sampling techniques was issued to a medical 
device company on October 10, 2007. Observation #15 stated:

Failure to establish and maintain procedures to ensure that 
 sampling methods are adequate for their intended use, to ensure 
that when changes occur the sampling plans are reviewed, and that 
sampling plans are written based on a valid statistical rationale, as 
required by 21 CFR 820.250(b): For example:

a. Your Asheboro, NC, facility did not have a robust endotoxin 
testing program for Central Venous Catheters (CVC) kits; CVC/
Dialysis Large-bore ChlorPrep Drape Chlorhexidine (CDC) kits, 
epidural kits, and Percutaneous Sheath Introducer kits which are 
all labeled “non-pyrogenic.” Of approximately 30 sterilizer loads 
per week, only three (3) 10 tests were performed on a weekly 
basis. Statistical techniques were not used for control purposes 
where statistical techniques were applicable.

b. For your Everett, MA, facility, post-sterilization functional 
testing after the rework of catheter [redacted] was not conducted 
on a sample from the same lot, but rather on a sample from a dif-
ferent catheter lot in the same sterilization load. That test resulted 
in the functional release of product from lot [redacted] which 
was subsequently shipped to customers. Lot [redacted] had been 
reworked due to a previous failed post-sterilization functional 
check that identified a hole in the catheter.5

Yet another observation related to sampling techniques was issued to a 
pharmaceutical company in Ohio in a Warning Letter dated July 13, 2004. 
Observation #15 of the Warning Letter stated:

Written procedures for sampling and testing plans are not followed 
for each drug product [21 CFR 211.165(c)]. Specifically: The num-
ber of vials to be tested for sterility was to follow the requirements 
in the USP. There were instances where fewer vials were sent to 
the testing laboratory than were indicated in the USP.6

One of the areas of the regulation where the use of statistical tools is a key 
element is 21 CFR 820.100, “Corrective and preventive action.” On June 
21, 2010, a Warning Letter was issued to a medical device company in 
 California. Observation #2 stated:
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Failure to implement procedures for implementing corrective and 
preventive actions, as required by 21 CFR 820.100(a). Specifi-
cally, a Corrective and Preventive Action (CAPA), either a Low 
Level CAPA (LLCAPA) or a High Level CAPA (HLCAPA), was 
not initiated per procedure number POL-016—Corrective and 
Preventive Action System (Revision E) for the Solanas Set Screw 
and Instruments whereby changes from the original (b)(4) shape 
to the new (b)(4) shape were implemented. CAPA report #08-016 
was initiated for complaints associated with the (b)(4)'. The inves-
tigator was told by the Senior Director, Quality Control that CAPA 
report #08-016 extended to the Solanas family of implants but 
there was no documented statement in the CAPA that it included 
the Solanas family of implants.

We have reviewed your response and have concluded that it is 
inadequate. You revised procedure number POL-016— Corrective 
and Preventive Action System (Revision F) to include the require-
ment that a CAPA be initiated when, “More than 3 Complaints 
or NCMR’s for the same issue for the same product within a one 
month period” and the “Greater than 2-sigma increase in the rate 
of Complaints or NCMRs during any trend review.” However, 
this procedure does not include a valid statistical rationale for this 
trend identification method.7

The integration of SPC and CAPA is the topic of the next subchapter.

2.3 SPC and CaPa

It has been noted that SPC is a key element of the CAPA subsystem. Section 
820.100 of the regulation related to medical devices states that:

(a) Each manufacturer shall establish and maintain proce-
dures for implementing corrective and preventive action. The pro-
cedures shall include requirements for:

(1) Analyzing processes, work operations, concessions, qual-
ity audit reports, quality records, service records, complaints, 
returned product, and other sources of quality data to identify 
existing and potential causes of nonconforming product, or other 
quality problems. Appropriate statistical methodology shall be 
employed where necessary to detect recurring quality problems;8
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Section 820.100(a)(1) provides a non-exhaustive list of areas where SPC 
might be applied. However, the most important part of this section is where 
it states “to identify existing and potential causes of nonconforming prod-
uct” [emphasis added]. That wording is the basis for continuous process 
monitoring. It not only requests the use of process monitoring as a reac-
tive way of controlling the process (existing causes) but also establishes the 
need to be more proactive when controlling the process (potential causes). 
As will be seen in Chapter 11, through the use of control charts we will be 
able to identify potential problems before they actually occur.

As we have noted, section 820.100 provides the rationale to combine 
the statistical process control tools with the CAPA subsystem in the medi-
cal device industry. But what about a pharmaceutical company? Is there 
a CAPA section within 21 CFR 211? Not specifically. However, as men-
tioned, FDA publishes guidances from time to time to clarify certain gaps 
in the regulations. Specifically, to address the CAPA issue in a pharme-
ceutical environment, FDA issued the 2006 guidance Investigating Out-of-
Specification (OOS) Test Results for Pharmaceutical Production. Footnote 
7 states:

Please note that §211.192 requires a thorough investigation of 
any discrepancy, including documentation of conclusions and 
 follow-up. Implicit in this requirement for investigation is the need 
to implement corrective and preventive actions. Corrective and 
preventive action is consistent with the FDA’s requirements under 
21 CFR part 820, subpart J, pertaining to medical devices, as well 
as the 2004 draft guidance entitled Quality Systems Approach to 
Pharmaceutical Current Good Manufacturing Practice Regula-
tions, which, when finalized, will represent the Agency’s current 
thinking on this topic.9

So, the same link between SPC and CAPA can be established for a pharma-
ceutical company. As mentioned in Section 1.2.1, regulations for finished 
pharmaceutical products and for medical devices complement each other. 
In order to implement the regulations effectively, we need to visualize them 
from a holistic point of view. 

2.4 SuMMaRy

It is evident that SPC plays an important role in any organization. In this 
chapter we were able to see many examples of the use (and misuse) of 
SPC in organizations regulated by FDA. The problem is not only present in 
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domestic sites; we were able to see that the same issues are happening off-
shore. Remember that many offshore medical device companies are using 
ISO 13485:2003 as their quality system standard, which is very consistent 
with the requirements of 21 CFR 820. Furthermore, many pharmaceutical 
companies are using ICH Q10, which FDA has also adopted as a guidance. 
So, the importance of SPC in monitoring and continuously improving pro-
cesses is inherent in every company regulated by FDA, whether domestic or 
offshore. In order to learn how to implement an effective SPC system, the 
concept of process variation must be well understood.
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3
Process Variation

3.1 OVerView

Variation is an inherent part of every process. Usually, we measure the 
accepted variation, considering only how much the process varies when 
compared to the customer specifications. Figure 3.1 shows two interpreta-
tions of this variation. The diagram on the left of Figure 3.1 shows that as 
long as the process is within the customer specification limits, we do not 
have any monetary losses. Once the process gets outside the customer spec-
ifications, then we begin to accrue monetary losses. 

However, as per quality guru Genichi Taguchi, monetary losses start 
as soon as our process starts to shift away from the target value.1 Further-
more, Taguchi mentioned that those monetary losses were experienced 
by society. As we move farther away from the target value, the monetary 
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Figure 3.1 Concepts of process variation as compared to customer 
 specifications.
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losses increase, following a quadratic function. Specifically, the Taguchi 
loss function shown on the right side of Figure 3.1 is defined by the follow-
ing formula:

L = k(y – T)2

where L is the monetary loss, k is a cost factor, y is the actual value, and T 
is the target value.

Let us explain the concept with an example:

A company is dedicated to the bottling of soft drinks. Their engi-
neering department sets a target value and tolerances for the 
amount of soft drink that each bottle must contain. If they only 
focus on being within the specification limits (pass or fail deci-
sion), they will never learn about the monetary loss incurred 
whenever a bottle deviates from its target value (left-hand chart of 
Figure 3.1). In contrast, if they use the Taguchi model (right-hand 
chart of Figure 3.1), they can conclude that society will experience 
a monetary loss. How? Let us see.

If their process is continuously overfilling the bottles, they 
will be incurring an excessive use of material (soft drink). So, 
when the yield of material usage is calculated, they will see a 
negative accounting variance. That is, in order to produce certain 
number of bottles they would have used a certain amount of soft 
drink. But, because of the overfilling, the direct material cost will 
be higher. The profit formula is Profit = Price – Cost. So, if cost 
increases, and they want to keep the same profit, then price has to 
be increased. And who do you think will be impacted by the price 
increase? Society, of course.

If their process is continuously underfilling the bottles, the 
accounting variance will be positive. Now cost will be lower and 
profit will be higher. However, what is the problem with underfill-
ing the bottles? Dissatisfied customers. In this case, dissatisfied 
customers will not purchase the product anymore. This will result 
in lower sales and, consequently, lower profits. If the company 
wants to keep the same profit, what will it have to do? Increase 
the price. And who do you think will be impacted by the price 
increase? Society, again. 

In this way, we can see that society will always end up paying for the pro-
cess inefficiencies. Consequently, it is of the utmost importance to reduce 
the process variation. In order to reach that goal, we must identify what 
causes the variation in our processes. 
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3.2 The Causes  
Of VariaTiOn

Quality guru W. Edwards Deming mentioned that every process has varia-
tion. It does not matter how many times we perform a task or manufacture 
a product; there will always be small differences. Those differences can be 
attributed to the common and special causes of variation.

Common causes of variation are always present in processes. This type 
of variation contributes a small amount to the total variation. For instance, 
there might be small lot-to-lot variation. The same variation can be seen 
operator to operator and within operators. A characteristic of the common 
causes of variation is that they are predictable. As we will see later, when a 
process is in statistical control, we can predict within which values the mea-
surements of our process will be. Consequently, we can say that a process 
in statistical control is stable, predictable, and subject to common causes of 
variation. 

On the other hand, there are the special, or assignable, causes of varia-
tion. As opposed to the common causes of variation, the special causes of 
variation are not always present in processes. Special causes appear and 
disappear sporadically. The special causes are not predictable; they can 
happen at any time and do not necessarily provide us a signal whenever 
they are going to appear. A process out of statistical control shows com-
mon and special causes of variation. This type of process is unstable and 
unpredictable. 

An example can help us understand the concept of common and spe-
cial causes of variation:

An operator works on a molding machine. Each day, he arrives 
to work and starts operating his machine at about the same time. 
He uses the same material, from just one supplier. He also per-
forms the machine setting and some minor maintenance tasks. 
Each part that comes out of the machine is not exactly the same. 
There are small variations part to part. However, those small vari-
ations are considered to be due to common causes, or random pro-
cess variation.

One day, however, the operator is absent. A replacement oper-
ator works on the machine on that day. Although they both fol-
low the same standard operating procedure, the machine setup is 
more an art than a science. That is, the setup is operator depen-
dent. The new operator does not have the same experience as the 
original operator. Additionally, a material from a new supplier was 
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approved and started to be used on that day. Suddenly, the parts 
begin to vary much more than usual. The new operator starts to 
make adjustments to the machine until, unfortunately, it wears out. 
Notice that many special (or assignable) causes were present. The 
higher variation was produced by the combination of those spe-
cial causes. 

Knowledge about the causes of variation is of paramount importance 
because each type of variation must be dealt with using a different approach, 
as will be seen when we cover the topic of control charts.

3.3 summary

The study of process variation is fundamental in the implementation of 
an effective SPC system. We must identify and distinguish between the 
common causes and special causes of variation because each one must be 
dealt with in a different way. One of the major mistakes is to treat common 
causes as special causes, and vice versa. This will lead us to overreacting at 
times, while not reacting at all in other situations. The use of statistics can 
help us understand the type of variation present and which type of action 
would be recommended to deal with that variation.
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4
Basic Principles  

of Statistics

4.1 Overview

In order to understand the causes of variation, we will use various statisti-
cal concepts. However, prior to going deeper into statistics, we need to learn 
some of the most frequently used statistical terms. Statistics is a collection 
of techniques used to make decisions about a population based on infor-
mation taken from a sample. The population is the total set of data, while 
the sample is a subset of the population. As will be seen later, we gener-
ally take samples because measuring the population can be costly and/or 
time-consuming. 

Descriptive statistics provides information about the data under eval-
uation. For instance, it helps us understand the central tendency, the dis-
persion, and the shape of a set of data. By using descriptive statistics, we 
organize, summarize, and present the data in order to make decisions. 
Some examples of descriptive statistics are averages, medians, ranges, vari-
ances, and so on. Inferential statistics allows us to make predictions about 
the behavior of some data, using probabilities as a mean to provide a degree 
of certainty to the decision we are making about the data. For instance, 
whenever we perform a simple linear regression we obtain an equation that 
allows us to predict the value of a response variable (y) for certain values of 
the input variable (x). 

We frequently find that terms such as parameter and statistic are used 
interchangeably. However, that is wrong. The parameter is the true value, 
while the statistic is an estimate of the parameter. In order to obtain a 
parameter, we must measure the whole population. However, as mentioned, 
measuring the population sometimes is impractical. For this reason, in most 
cases we just take a sample and estimate the parameter by calculating a 
statistic. Figure 4.1 shows the symbols used to define some of the most 
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 common parameters and statistics. Notice that parameters are obtained 
from the population, while statistics are obtained from the sample.

4.2 TyPeS Of DaTa

Prior to gathering any piece of data in order to analyze it, we need to con-
sider the type of data we have. In this way, we will be able to know which 
are the available tools we will be using during the analysis of such data. 
To simplify our discussion, data will be split into three categories: discrete 
(attribute) data, continuous (variable) data, and locational data. Discrete, or 
attribute, data are such things that can be counted. Also, they can be cat-
egorical or binary. Some examples of discrete data are number of defects, 
shift number, machine type, good/bad decision, and so on. 

On the other hand, continuous, or variable, data are such things that 
can be measured. These data can be subdivided into smaller portions. Some 
examples are weight, speed, temperature, and so on. This type of data pro-
vides more information than discrete data. For instance, it is not the same to 
say that a piece has one defect as it is to say how large the defect is. 

Finally, we have locational data, which shows where the characteris-
tic we are looking for is located. For instance, when we know where most 
of the defects occur, we might be able to arrive at a solution to the problem 
quicker. There is not any data type better than the others. Each data type 
has its own purpose. For that reason, it is recommended to use a combina-
tion of the three data types to analyze the problems and look for solutions 
to such problems. 

4.3 SamPling

A sample is a subset of a greater set, called a population. There are multiple 
reasons to analyze a sample instead of a population. Some of those  reasons 

Figure 4.1 Symbols used for some parameters and statistics.
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are cost, time, efficiency, destructive testing, and so on. The number of 
samples to take will depend on several factors, such as: 

•	 Type	of	data	(continuous	or	discrete)

•	 Purpose	of	data	collection

•	 Knowledge	about	the	population	standard	deviation

•	 The	degree	of	confidence	we	want	in	our	results	 
(allowable risk)

The combination of these factors will determine the amount of data to 
be collected. For instance, continuous data (for example, a measurement 
value) will require fewer samples than attribute data (for example, pass/
fail decision) for the same confidence level. Less data will be required for a 
cosmetic characteristic than for a critical characteristic. Also, the higher the  
variation of the data, the larger the sample size will have to be. Finally,  
the more confidence we want in the results, the greater the sample size. 
 Figure 4.2 shows an example of the kind of data collection matrix that is 
recommended prior to starting collection of data.

Each time that we sample, we need to consider a balance between the 
desired precision, the cost, and the sample size. For continuous data, we can 
use the following formula to calculate the sample size:

n = [(Zα/2)(s)/(d)]2

where

Z is a constant obtained from the normal distribution table  
based on the allowed error 

s is the estimated standard deviation

d is the desired precision

The following example will help us understand the concept: 

Suppose we have a process in which we want to calculate the sam-
ple size necessary to estimate the average for the weight of a tablet, 
with a precision of ±0.25 from its target. The historical estimate of 
the standard deviation is 1.0. We wish to calculate the sample size 
required to obtain an average within that precision (±0.25) with a 
95% confidence level, that is, allowing a 5% error. Based on our 
analysis, the required sample size is 62. Figure 4.3 shows a spread-
sheet calculation for this example.
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If we wish to increase the confidence level of our analysis to 
99%, the spreadsheet tells us to increase the sample size to 107, as 
shown in Figure 4.4. 

If we would like to calculate the sample size for a precision of 
±0.10 of its target value, we simply change the 0.25 value to 0.10. 
Applying the new precision to our example, and keeping the 99% 
confidence level, our sample size increases to 664, as shown in 
Figure 4.5. 

So far, we have calculated the sample size for continuous data. However, if 
the issue at hand requires the use of attribute data, the formula to be used to 
calculate the sample size will be

n = [(Zα/2)(p)(1 – p)/(d)]2

Figure 4.3 Sample size calculation—continuous data, example 1.

Estimate of standard deviation

Desired margin of error

Confidence level (enter .95 or 95%)

Minimum sample size

Sample data:

1

0.25

95.0%

62

S

delta/half-interval

100 × (1 – α)%

n

Figure 4.4 Sample size calculation—continuous data, example 2.

Estimate of standard deviation
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Confidence level (enter .95 or 95%)

Minimum sample size

Sample data:

1
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99.0%
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100 × (1 – α)%

n

Figure 4.5 Sample size calculation—continuous data, example 3.
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where

Z is a constant obtained from the normal distribution table  
based on the allowed error

p is the estimated proportion defective

d is the desired precision

Let us present the concept with an example:

Suppose the historical proportion of calls answered within the 
established time frame in a customer service call center is 95%. 
The sample size required to see a margin of error of ±3%, consid-
ering a 99% confidence level (1% error), would be 351 samples. 
On the other hand, the spreadsheet makes an adjustment based on  
the sample size and the proportion (np ≥ 5). In this case, the 
spreadsheet recommends a sample size of 333 (see Figure 4.6).

It is important to realize that although the formulas provide an estimated 
sample size based on certain parameters, for the conclusions to be valid we 
need to consider the following factors:

•	 Data	must	be	collected	so	that	they	are	representative	of	the	 
process (random).

•	 There	must	be	no	difference	between	the	data	collected	and	the	
data not collected. 

•	 It	is	important	to	consider	how,	where,	and	when	we	sample.	

•	 Sample	from	different	times,	so	we	can	observe	the	different	
sources of variation of the process. 

•	 Plot	the	data	in	a	control	chart	to	see	if	the	process	is	in	statistical	
control, which is a key requirement for many of the statistical 
analyses we will be performing. 

Figure 4.6 Sample size calculation—discrete data.

Estimate of proportion

Desired margin of error

Confidence level (enter .95 or 95%)

Minimum sample size

Sample data:

0.95

0.03

99.0%

351

333

P

delta/half-interval

100 × (1 – α)%

n

np check (should be ≥ 5)
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4.4 DeScriBing The SamPle

In Section 4.1 we defined the concept of descriptive statistics, which pro-
vide information about the data under study. When using descriptive sta-
tistics, we organize, summarize, and present the data in such a way that 
decisions	can	be	taken	based	on	them.	Descriptive	statistics	can	be	catego-
rized into three groups:

•	 Measures	of	central	tendency

•	 Measures	of	dispersion

•	 Measures	of	shape

The measures of central tendency show to which point most of the data con-
verge. These measures can be subdivided into the following values: 

•	 Average	(mean):	the	sum	of	all	data	points	divided	by	the	total	
number of data points

•	 Mode:	the	value	that	is	repeated	the	greatest	number	of	times

•	 Median:	the	value	that	lies	in	the	central	position	once	we	order	 
the data in ascending or descending order

On the other hand, measures of dispersion show how much the data vary 
between	them.	Measures	of	dispersion	can	be	subdivided	into	the	follow-
ing values: 

•	 Range:	the	difference	between	the	highest	and	lowest	value

•	 Variance:	the	square	of	the	sum	of	each	individual	value	minus	 
the average, divided by the population size (or by sample size 
minus 1)

•	 Standard	deviation:	the	square	root	of	the	variance

Finally, the measures of shape provide information about the type of dis-
tribution represented by the data. One of the most common graphical tools 
used to visualize the shape of the data is the histogram. This tool will be 
presented in more detail in the next chapter. An example of a histogram, 
along with descriptive statistics, for analyzing the data about the weight of 
a tablet (in grams) is shown in Figure 4.7. 

The table shows two measures of central tendency: average (mean) and 
median. It also shows two measures of dispersion: range and standard devi-
ation (stdev). Furthermore, the table provides information about the confi-
dence intervals and the normality test. These topics will be covered later 
in the book. 
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4.5 The nOrmal DiSTriBuTiOn

In statistics, there are many probability distributions, both for continuous 
data and discrete data. Among the most common probability distributions 
for continuous data are the normal, exponential, Weibull, lognormal, and 
so on. The most common probability distributions for attribute data are the 
Poisson, binomial, and hypergeometric. This section will cover only the 
normal distribution. 

The normal distribution has certain characteristics. For instance, a 
normal distribution can be defined by the average and standard deviation 
of the population. Once we know those parameters, it can be found that 
68.26% of the data will lie within ±1 standard deviation, 95.44% of the 
data will lie within ±2 standard deviations, and 99.73% of the data will lie 
within ±3 standard deviations. Later in the book we will use this concept in 
order to establish the statistical control limits.

Yet another characteristic of the normal distribution is that the three 
measures of central tendency (mode, median, and mean) are the same 
value. Figure 4.8 shows the relationship between the mode, median, and 
mean for the normal distribution. 

When data do not follow a normal distribution, those three values of 
central tendency are not the same. Figure 4.9 shows the relationship between 
the mode, median, and mean for a nonnormal distribution.

What is the importance, with respect to the central tendency measures, 
of knowing whether the distribution is normal or nonnormal? In a normal 
distribution, the mode, the median, and the mean are the same value. Conse-
quently, any of these three values represent the central tendency.  However, 
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Figure 4.7 Histogram with descriptive statistics for the weight of a tablet.
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when data do not follow a normal distribution, the median is the best esti-
mate of central tendency because the median is less impacted by those 
extreme values called outliers. An outlier is a data point that is very small 
or very large when compared with the rest of the data. Because the median 
only considers the position of the middle datum, the median is not greatly 
affected by one or a few outliers. The mean, however, is greatly impacted 
by those outliers because each datum is considered in calculating the mean. 

Consequently, one of the first tests to be performed when analyzing 
data is the normality test. If the data follow a normal distribution, any of 
the three measures of central tendency can be used. However, if data do 
not  follow a normal distribution, the median must be used as the measure 
of central tendency, not the mean. Those tests that use the mean as a mea-
sure of central tendency are called parametric tests, while those tests that 

Mode = Median = Mean

Figure 4.8 Mode, median, and mean in a normal distribution.

Mode

Median

Mean

Figure 4.9 Mode, median, and mean in a nonnormal distribution.
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use the median as a measure of central tendency are called nonparametric 
tests. We will be discussing these and other tests in later chapters. 

It is very important to establish that although in many cases it is con-
venient to have data from a normal distribution, this is not always the case. 
Figure 4.10 is a good example. 

Figure 4.10 shows the distribution of the data for late deliveries of a 
medical device. Ideally, the number of late deliveries would be zero. How-
ever, if there are late deliveries, we want most of them to fall within a low 
tardiness value. What would happen if these data followed a normal distri-
bution? Would that be acceptable? 

4.6 Summary

The concept of variation is of paramount importance in order to monitor 
and control our processes. The difference between population and sam-
ple, parameters and statistics, discrete and variable data, and so on, must 
be well understood for an appropriate statistical analysis. A good sampling 
plan must consider factors such as type of data, process dispersion, con-
fidence level, and precision required. Whenever possible, collect variable 
data instead of attribute data because the former provides more relevant 
information than the latter.

In order to describe the sample, we need to know about the measures 
of central tendency, the measures of dispersion, and the measures of shape. 
When data follow the normal distribution, the mode, the median, and 
the mean (average) are approximately the same. However, when data are 
skewed, the average is greatly impacted by extreme values (outliers). In this 
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case, the median provides a better approximation of the central tendency 
than the average. By the same token, when data are skewed, the standard 
deviation and variance provide a better approximation of dispersion than 
the range.

In order to analyze the data, we can perform a graphical and an ana-
lytical evaluation. The following chapter presents some of the most com-
mon graphical tools used to start the evaluation of data. Just remember that 
graphical tools are the beginning of the analysis. The results obtained from 
the graphical tools have to be confirmed through the use of the analytical 
tools presented in subsequent chapters.
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5
Graphical Tools

5.1 Overview

There are many ways to evaluate data. For instance, data can be analyzed 
practically. What does that mean? Evaluating the data practically means 
to just take a look at it and see if it makes sense. For example, is there 
any extreme value present? Can you see a “typo” error in the data? Any 
 pattern? After the practical evaluation, the graphical evaluation follows. At 
this point in our evaluation, we rely on what the different types of graphs 
show. However, a graph alone does not present all the information required 
to make a conclusion. For instance, a histogram may show a “bell curve,” 
but that does not necessarily mean that the data follow the normal distribu-
tion. So, in order to achieve these conclusions, an analytical evaluation of 
the data is required. This three-level evaluation of data can be defined as 
PGA: practical, graphical, and analytical.

In this chapter, we will be presenting some of the most common graph-
ical tools used to evaluate data. Furthermore, many practical examples of 
applications of graphical tools in an FDA-regulated industry will be pro-
vided throughout the chapter. 

5.2 HisTOGram

Let us start with the histogram. This graphical tool is very helpful to ana-
lyze continuous data. A histogram is a bar chart that represents the fre-
quency of certain data. Such frequency is determined by the height of each 
con secutive bar. Using a histogram it is very easy to graphically identify the 
central tendency of the data (represented by the highest bar in the graph) 
and the dispersion (the spread of the graph). Furthermore, using a  histogram 
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we can identify the shape of the data. Figure 5.1 shows a  histogram for the 
diameter of a thread (in inches) used in a medical device application.

The histogram in Figure 5.1 shows the frequency for each of the dimen-
sional intervals on a continuous scale. It also shows a normal distribution 
curve, which would represent that data if it were perfectly normal.

There are many times in which we do not want to analyze the totality of 
the data but analyze them for certain categories. An example would be seg-
regating the data by machine. Let us suppose that data about thread diam-
eter come from two different machines. Figure 5.2 shows the histogram for  
each machine in a combined chart. In this way, we can analyze the data  
for each machine separately. 

So, whenever we want to have a quick understanding of the central ten-
dency, dispersion, and shape of data, the histogram is an excellent graphical 
tool to begin our evaluation. 

5.3 BOx PlOT

The box plot, or box-and-whisker diagram, is another graphical tool used 
to visualize the data being analyzed. The bottom of the box represents the 
25th percentile, the line inside the box represents the 50th percentile (or 
median), and the top of the box represents the 75th percentile. The lines 
spreading out of the box (the whiskers) represent the expected variation.
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Those points beyond the whiskers represent outliers. Figure 5.3 shows 
the box plot for our thread diameter example. 

As with histograms, box plots can be developed for the totality of the 
data or for different categories of data. Figure 5.4 shows multiple box plots 
for the thread diameter example.

While histograms are mainly used to visualize the central tendency, 
dispersion, and shape of the data, box plots are commonly used to compare 
the central tendency (median or average) between certain groups. Box plots 
are also useful in identifying extreme values (outliers) in the data set.
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5.4 DOT PlOT

One disadvantage of box plots and histograms is that they do not show the 
individual data. A graphical tool that shows each individual data point is 
the dot plot. Figure 5.5 shows the dot plot for the thread diameter data.

Figure 5.3 Box plot.
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As with histograms and box plots, dot plots can be developed for the 
totality of the data or for different categories of data. Figure 5.6 shows mul-
tiple box plots for the thread diameter example.
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5.5 PareTO DiaGram

In Section 5.2, the histogram was presented as a graphical tool for analyz-
ing continuous data. The Pareto diagram, on the other hand, is used to ana-
lyze discrete or attribute data. Specifically, the main objective of a Pareto 
diagram is to prioritize. That is the reason why the bars are represented in 
descending order. The most common Pareto diagram used in the quality 
arena is the defects Pareto. Used in this way, the focus of the Pareto dia-
gram is to determine which defects have the greatest impact in our pro-
cesses. Figure 5.7 shows a Pareto diagram for the packaging process in a 
pharmaceutical company. 

The Pareto diagram shown in Figure 5.7 has two vertical axes. The axis 
on the left represents the frequency of each defect (represented by each bar). 
The axis on the right of the diagram shows the cumulative frequency when 
we consider each additional defect. The cumulative frequency scale is rep-
resented by the line in the upper part of the diagram.

It can be seen in the Pareto diagram in Figure 5.7 that “Cosmetic—
minor scratch” is the most frequent defect, while “Incorrect lot #” is the 
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Figure 5.7 Defects Pareto diagram.
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least frequent defect. Does that mean our objective would be to focus our 
efforts on eliminating or reducing the “Cosmetic—minor scratch” defects? 
Not necessarily. Why not?

Many times, the most frequent defect is not necessarily the one with 
the greatest impact or with the greatest cost. For this reason, it is recom-
mended to multiply the frequency by some other factor. Some examples of 
that factor could be cost, severity, detectability, and so on. If the company 
is involved in a failure mode and effects analysis (FMEA) initiative, the 
weighting factor could be the risk priority number (RPN) obtained for each 
failure mode. More information about the practical use of the FMEA tool 
can be obtained from the article titled “Fail-Safe FMEA,” published in the 
January 2012 edition of ASQ’s Quality Progress magazine.1 For our exam-
ple, Table 5.1 shows an example of the application of a weighting factor.

Once the weighting factors are calculated, a new Pareto diagram is 
developed. Figure 5.8 shows the weighted Pareto diagram. 

Looking at the weighted Pareto diagram, the top two defects now 
(“Incorrect expiration date” and “Incorrect lot #”) are the two defects that 
appeared within the last three positions in the original Pareto diagram. 
Although these defects (“Incorrect expiration date” and “Incorrect lot #”) 
occurred with the lowest frequency in the original Pareto diagram, based 
on their combined risk-frequency factor they are the most critical defects, 
which must be dealt with as the highest priority. When we look at the line 

Table 5.1 Application of a weighting factor to the Pareto diagram.

  Criticality 
Defects Count factor New total

Incorect lot # 1 1000 1000

Incorrect expiration date 2 1000 2000

Cosmetic—minor scratch 125 1 125

Bottle label quantity discrepancy 9 50 450

Product info quantity discrepancy 11 50 550

Corrugate label qty. discrepancy 16 25 400

Missing noncritical information 36 10 360

Missing review signature 2 50 100

Incorrect calculation 7 25 175

Rounding error 5 50 250

Incorrect fill weight (underfill) 36 25 900
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representing the cumulative frequency, it can be noted that eliminating the 
top three defects will eliminate about 60% of our problems.

In the previous example, only 11 types of defects were represented  
in the Pareto diagram. However, as the number of defect categories 
increases, the Pareto diagram becomes cluttered. One important feature of 
the Pareto diagram is the “Other” category. In this category, those defects 
with the lowest impact are combined in just a single bar. In this way, we can 
focus our attention to those defect categories with the highest impact. Figure 
5.9 shows our Pareto diagram with the “Other” bar. This bar is always pre-
sented in the last position of the diagram, regardless of its height. Remem-
ber that “Other” represents a combination of multiple types of defects.

5.6 scaTTer PlOT

Many times, we want to know if there is any kind of relationship between 
two variables: an input variable and an output variable. In particular, we 
want to know if the relationship is positive (as the input variable increases, 
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the output variable also increases) or negative (as the input variable 
increases, the output variable decreases). Also, we want to know if the rela-
tionship between those variables, regardless of whether it is positive or neg-
ative, is strong (dots are clustered around the regression line) or weak (dots 
are scattered on both sides of the regression line). 

In order to determine if there is any relationship between two continu-
ous variables, the scatter plot can be of assistance. In a scatter plot, we plot 
the input variable along the horizontal axis (the x-axis) and the output vari-
able along the vertical axis (the y-axis). It is very important to note that in 
order to use the scatter plot, the data must be continuous for both variables. 
If the input variable (x) is discrete and the output variable (y) is continu-
ous, the scatter plot would not be the most appropriate graphical tool. In 
this case, the box plot discussed in Section 5.3 would be more appropriate. 
 Figure 5.10 shows shows a scatter plot in which the tablet weight (input vari-
able) is compared to the dissolution time (output variable). 

Note that the relationship between the tablet weight and the dissolution 
time is positive. As tablet weight increases, the dissolution time increases. 
There is a strong relationship between both variables, because the dots are 
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clustered around the regression line. However, how strong is that correla-
tion? In Chapter 9 we will discuss the concepts of correlation coefficient 
and determination coefficient in order to conclude how strong or weak is 
the relationship between the variables being analyzed. 

5.7 run cHarT

So far, the graphical tools we have seen are mostly related to gathering 
information and showing patterns about the central tendency, the disper-
sion, and the shape of the data distribution. However, none of these tools 
consider the order in which the data were collected (for instance, the time 
when the data were gathered). Take a look at the histogram presented in 
Figure 5.11. It represents the diameter of a pin used in a medical device. As 
can be noted, the data fit a normal distribution very well. When compar-
ing the process spread with the customer specifications, the process perfor-
mance index (Pp) is 1.40 and the actual process performance index (Ppk) is 
1.34. (More information about the process capability and process perfor-
mance indices will be presented in Chapter 7.)

If we only consider the shape of the data, along with the process spread 
compared to the customer specifications, we might conclude that the pro-
cess is capable, almost centered within the specification limits, and no 
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 further action is required. However, when we plot the data as a run chart 
(that is, in the sequential order in which they were collected), as shown in 
Figure 5.12, we are able to see an upward trend. Since the upper specifi-
cation limit was established at 1.30, it will not take long to have an out-of-
specification value, probably within the next few weeks. 
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Organizing the data using a time-based chart is of paramount impor-
tance when data are collected in a sequential manner. Whenever we  analyze 
any kind of data, a combination of graphical tools is preferred over just 
one type of graphical tool. The appropriate use of time-based charts, like  
the run chart and the control chart, will assist us in determining when  
any kind of action is needed. They can also show us when a significant 
change has occurred in our processes. Let us analyze the run chart in  Figure 
5.13.

The run chart in Figure 5.13 shows the number of days required to com-
plete a laboratory investigation report. Each point along the horizontal axis 
represents an investigation (in sequential order); the value in the  vertical 
axis represents the time it took to complete that laboratory investigation. 
Looking at the chart, at least three distinct patterns can be observed. The 
first pattern is observed for about the first 60 data points. This period repre-
sents the baseline, the period before the company started a massive CAPA 
system certification process. The second pattern represents the period dur-
ing which the company started the CAPA system certification process. A 
sudden decrease in the time to complete the laboratory investigations can 
be observed in this period. Also, a slight reduction in the variation can be 
observed for the second pattern. The third pattern represents the period 
during which the company started to apply all the techniques learned dur-
ing the CAPA system certification process. A slight reduction in the days to 
complete the investigation can be observed. Furthermore, a drastic decrease 
in the time variation can be observed during this period. This run chart can 
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be used to demonstrate the decrease in the variation and median time to 
complete the laboratory investigations. Furthermore, it can be used to ana-
lyze the effectiveness of the CAPA system certification training.

Most of the available statistical software packages include run charts in 
order to analyze different patterns. Among the patterns that most of these 
statistical software packages evaluate are clustering, mixtures, trends, and 
oscillations.

Let us start our discussion with clustering. Whenever a cluster is 
observed in data plotted in a time-based manner, that clustering might 
be caused by specific situations. Clusters appear as too many consecutive 
points on the same side of the central tendency line (the median). Possi-
ble reasons might be changes in active ingredients, different shifts, differ-
ent operators, and so on. Figure 5.14 shows a run chart in which different 
clusters can be observed. An investigation of the cause of those clusters 
revealed that a change in active parmaceutical ingredient (API) occurred 
at several points.

The run chart is a graphical tool used to see these patterns. However, 
whenever we perform a run chart analysis using any statistical software 
package, a statistic called the p-value can assist us in determining if any of 
the previously mentioned patterns (cluster, mixture, trend, or oscillation) 
is being observed. For now, if we find a p-value lower than 0.05 for any of 
these possible patterns, we will conclude that the pattern is present in our 
data. Similarly, if the obtained p-value for nonrandomness is lower than 
0.05, we will conclude that the data are nonrandom. Figure 5.15 shows the 
statistical analysis for the API example.
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As can be seen in Figure 5.15, the data show a p-value for clustering 
lower than 0.05 (p-value = 0.0048), which means there is at least one cluster 
present. Looking at the run chart, two clusters can be observed: points 16 
to 22, and points 23 to 30. As mentioned, the root cause for those shifts was 
the use of a different active ingredient. Looking at Figure 5.15, we can also 
see that the p-value for lack of randomness is also lower than 0.05 (p-value 
= 0.0096). That means the data are not random.

Figure 5.16 shows a run chart for data showing mixtures. An investiga-
tion into the cause of the mixtures revealed that hardness data came from 
two different machines: press A and press B.

Figure 5.16  Run chart showing mixtures.
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As can be seen in Figure 5.17, the data show a p-value for mixtures 
lower than 0.05 (p-value = 0.0046), which means there are mixtures present. 
Looking at the run chart, two different populations can be observed: points 
above the median and points below the median. However, there are not many 
points close to the median. We expect most values to fall very close to the 
central tendency measure. However, in this case we can see a bimodal distri-
bution. As mentioned, the root cause for this bimodal distribution is the use 
of two different press machines. In Chapter 8 we will use hypothesis tests 
to determine if these medians are statistically different or not. Looking at 
 Figure 5.17, we can see that the p-value for lack of randomness is also lower 
than 0.05 (p-value = 0.0093). That means the data are not random.

Another pattern that can be analyzed with the use of run charts is a 
trend. This type of pattern can be observed whenever consecutive points 
show an upward or downward trend. There are countless reasons for this 
type of pattern. A very common root cause for this type of trend is machine 
wearout. Figure 5.18 shows the behavior of a pin diameter as the machine’s 
blade starts to wear out. It can be seen that, at some point, the operator 
detected the pattern (around data point #11) and corrected the problem. 
From that point on, the pin diameter showed a random pattern.

As can be seen in Figure 5.19, the data show a p-value for trends lower 
than 0.05 (p-value = 0.0015), which means there are trends present. Look-
ing at the run chart, an upward trend can be observed for the first 11 values. 
Afterward, the process started to behave in a random pattern.

Finally, the other type of pattern evaluated by most statistical software 
packages is oscillation. This type of pattern is characterized by too many 
consecutive jumps from one side of the central tendency line to the other 

Nonparametric run test: hardness by press machine

Number of runs about median: 23
Expected number of runs about median: 16
Number of points above median: 15
Number of points equal to or below median: 15
p-value for clustering: 0.9954
p-value for mixtures: 0.0046
p-value for lack of randomness (2-sided): 0.0093

Number of runs up or down: 22
Expected number of runs up or down: 19.667
p-value for trends: 0.8514
p-value for oscillation: 0.1486

Figure 5.17  Nonparametric run test showing mixtures and nonrandomness
  of data.
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side. This could be the result of overadjustment, which is what happened 
with the data shown in Figure 5.20.

A medical device manufacturer of strips was having quality prob-
lems related to strip length. An investigation revealed that the root cause 
of such high variation was machine overadjustment caused by a faulty 
 sensor.  Figure 5.21 shows a p-value for oscillation lower than 0.05 (p-value 
= 0.0086), which indicates that this pattern is being observed.

In this chapter, we have introduced the run chart as a graphical tool to 
identify clusters, mixtures, trends, and oscillations. These analyses will be 
combined with the hypothesis tests to be presented in Chapter 8.
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Figure 5.18  Run chart showing trends.

Nonparametric run test: pin diameter

Number of runs about median: 13
Expected number of runs about median: 15.733
Number of points above median: 13
Number of points equal to or below median: 17
p-value for clustering: 0.1504
p-value for mixtures: 0.8496
p-value for lack of randomness (2-sided): 0.3008

Number of runs up or down: 13
Expected number of runs up or down: 19.667
p-value for trends: 0.0015
p-value for oscillation: 0.9985

Figure 5.19  Nonparametric run test showing trends and randomness
  of data.



 Graphical Tools  51

5.8 nOrmaliTy TesT

In Section 5.2, we introduced the histogram as a graphical tool to show 
the shape of a data distribution. We saw how the histogram also shows the 
 normal distribution curve to determine how well the data under study fit 
that normal distribution. Furthermore, using the histogram with descrip-
tive statistics, we were able to see the estimates for central tendency, such 
as mean and median. 

However, so far we have not examined one of the tests performed 
using the histogram with descriptive statistics chart. That test is called the  
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Figure 5.20  Run chart showing oscillations.

Nonparametric run test: strip length

Number of runs about median: 16
Expected number of runs about median: 15.933
Number of points above median: 14
Number of points equal to or below median: 16
p-value for clustering: 0.5099
p-value for mixtures: 0.4901
p-value for lack of randomness (2-sided): 0.9801

Number of runs up or down: 25
Expected number of runs up or down: 19.667
p-value for trends: 0.9914
p-value for oscillation: 0.0086

Figure 5.21  Nonparametric run test showing oscillations and randomness
  of data.
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Anderson-Darling normality test. As will be discussed in greater detail in 
Chapter 8, whenever a p-value is lower than a probability (0.05, for illus-
trative purposes), a statistical hypothesis called the null hypothesis will 
be rejected. In that case, another statistical hypothesis called the alternate 
hypothesis will be accepted. Whenever a p-value is greater or equal to that 
probability, there will not be enough evidence to reject the null hypothesis.

For the Anderson-Darling normality test, the null hypothesis will be 
that the data follow a normal distribution. The alternate hypothesis is that 
the distribution is nonnormal. Figure 5.22 shows two histrograms: one 
of them shows a normal distribution, while the other shows a nonnormal 
distribution. 

The upper chart in Figure 5.22 shows that the normality hypothesis 
can not be rejected because the p-value for the Anderson-Darling normality 
test is 0.0766 (greater than 0.05). However, the lower chart in Figure 5.22 
shows a nonnormal distribution. In this case, the data are so skewed that 
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the  normality hypothesis is rejected. This is evidenced by a p-value for the 
Anderson-Darling normality test lower than 0.05.

5.9 THe imPOrTance Of  
assessinG nOrmaliTy

So, why is it important to evaluate the normality of the data we are analyz-
ing? In Section 4.5, the normal distribution was introduced. It was men-
tioned that when the data follow a normal distribution, the three measures 
of central tendency (mode, median, and mean) are very similar. However, 
when data do not follow a normal distribution (are skewed), those three 
measures of central tendency vary significantly. In particular, the mean 
(average) is the central tendency measure most sensitive to outliers.

Whenever the central tendency or dispersion of one or more distribu-
tions are going to be compared, it is important to evaluate the normality of 
the data. If the data follow a normal distribution, many parametric tests can 
be performed to compare means and variances. Some examples of these 
tests are one-sample t-test, two-sample t-test, one-way ANOVA, two-way 
ANOVA, F-test, and Bartlett test. On the other hand, whenever the data 
do not follow a normal distribution, the tests mentioned do not have any 
 statistical value. Instead, some nonparametric tests could be performed on 
the data. Some examples of nonparametric tests are one-sample sign, one-
sample Wilcoxon, two-sample Mann-Whitney, Kruskal-Wallis, and  Levene 
tests. The details for each of these tests, along with examples applied to  
the FDA-regulated industry, will be presented in Chapter 8.

5.10 summary

Data can be evaluated in several ways. One common approach is to evaluate 
the data practically, graphically, and analytically. There are many graphical 
tools available. Each tool has its specific purpose. For instance, to look for 
central tendency, dispersion, and shape, we can use the histogram. When-
ever we want to compare the central tendency of various groups, the box 
plot can assist us. One disadvantage of the histogram and the box plot is 
that they do not show the individual values; the dot plot can help us identify 
those individual values. If we want to prioritize the order in which we will 
address our quality issues, a Pareto diagram is a good option. In order to 
determine if there is a relationship between an independent variable (x) and 
a dependent variable (y), the scatter plot is an excellent tool. 



Whenever data are collected in a sequential manner, they must 
also be presented in a way in which the time-based behavior of the data  
can be observed. The run chart is an easy-to-use chart to determine whether 
the data behave in a random manner or if some sort of pattern is being 
observed. Patterns such as clustering, mixtures, trends, and oscillations can 
be analyzed through the use of run charts. Finally, the normality of the data 
must be addressed because the use of certain analytical tools is subject to 
the assumption of that normality. If the data follow the normal distribution, 
certain tests (called parametric tests) are available, whereas if the data do 
not follow a normal distribution, other tests (called nonparametric tests) 
are available.
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6
Measurement Systems 

Analysis

6.1 Overview

It was previously mentioned that every process is subject to variation. Such 
variation not only affects manufacturing processes, but any process. One 
of the least analyzed processes is the measurement process. The reason is 
not well known; people might not recognize that the measurement process 
itself is subject to variation, or we might think that because of the expe-
rience of our analysts, they are not subject to improvements. Generally, 
whenever we want to reduce process variation, the focus is on the manufac-
turing process. However, the following formula provides some insight about 
the components of variation: 

σ2
Total = σ2

Process + σ2
Measurement system

This formula establishes that total variation is equal to the process variation 
plus the measurement system variation. In other words, the formula urges 
us to consider the variation produced by the measurement system separately 
from the variation inherent in the processes. To summarize the point, we do 
not want to mask the measurement system variation with the process varia-
tion because the two types of variation are equally important.

The process used to identify the sources of variation in the measure-
ment system is called measurement systems analysis; the tool used to 
measure those sources of variation is called gage repeatability and repro-
ducibility (gage R&R). A gage R&R is a study in which several operators 
measure certain parts repeatedly in order to assess the repeatability and 
the reproducibility of the measurement system. Once the different sources 
of variation are analyzed, it can be determined if the variation comes from  
the differences between operators, differences in measurement methods,  
or the inherent difference between the parts. During a gage R&R, the fol-
lowing aspects must be considered:
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•	 Each	operator	measures	the	same	part	several	times.

•	 Data	must	be	balanced;	that	is,	operators	must	measure	each	part	
the same number of times.

•	 Units	must	represent	the	whole	range	of	expected	variation.	 
It is recommended to select parts within the specification  
range, that is, parts from the lower specification limit, parts  
from the upper specification limit, and parts within the 
specification limits. 

•	 Operators	must	measure	the	parts	randomly.	They	must	not	know	
which part number they are measuring at any given time.

6.2 MetricS

Some of the metrics calculated in a gage R&R study are: 

•	 Repeatability—The variation caused by the instrument. It is the 
variation observed when an operator measures the same part 
repeteadly using the same measurement instrument.

•	 Reproducibility—The variation caused by the measurement  
system. It is the variation observed when several operators  
measure the same part using the same instrument. 

•	 Percent	precision-to-tolerance	(%	P/T)—The percentage of the 
specification tolerance occupied by the measurement system 
variation. 

•	 Percent	gage	R&R	(%	R&R)—The percentage of the total  
variation occupied by the measurement system. 

For the last two metrics presented (% P/T and % R&R), a value lower than 
30% is commonly desired. Specifically, a percent precision-to-tolerance  
(% P/T) lower than 30% helps us minimize two risks: the risk of rejecting 
a good part and the risk of failing to reject a defective part. The lower the 
% P/T, the larger the guarantee. On the other hand, a percent gage R&R 
(% R&R) lower than 30% allows the measurement system to observe the 
improvements in the process, such as the reduction in variability. When the 
% R&R is too high, it is possible that we could reduce variation in the pro-
cess, but the measurement system (instruments, operators, and so on) might 
not be able to measure or observe that reduction in the variation. It is like 
trying to measure an improvement of a few millimeters using an instrument 
that only reads centimeters.
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6.3 PerfOrMing A gAge r&r

An example can help us understand the theory underlying the gage R&R:

A medical device manufacturer wants to analyze their measure-
ment system. They produce plastic caps that will be used in a med-
ical application. One of the most critical parameters is the inner 
diameter of the plastic cap. In order to evaluate their measurement 
system, three analysts are selected. These analysts will measure 10 
parts, and each part will be measured three times by each analyst. 
An excerpt of the matrix generated for the study, along with the 
collected data, is presented in Figure 6.1.

Run order

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Part

9

7

6

8

3

6

2

8

10

5

7

2

2

10

8

Analyst

1

1

2

2

1

2

1

3

3

3

3

3

1

1

1

Cap diameter

12.26

10.66

9.80

10.08

11.34

10.06

9.32

9.54

7.84

8.54

10.21

8.87

9.42

8.69

9.83

Gage name:

Date of study:

Performed by:

Notes:

Cap diameter

06/15/12

M. Peña

Figure 6.1 Gage R&R data collection matrix.
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Figure 6.2 shows that 92.24% of the variation is due to the parts, while 
the other 7.76% is due to the measurement system. Furthermore, the 7.76% 
variation of the measurement system can be subdivided as 4.37% due to 
reproducibility (differences between analysts) and 3.39% due to repeatabil-
ity (the instrument variation). So, if we want to reduce the measurement 
system variation, we could start by analyzing what is causing the differ-
ences between analysts.

Figure 6.3 shows the % P/T and the % R&R. Note that both values are 
lower than 30%. These results mean that the measurement system is capa-
ble of accepting good parts and rejecting defective parts effectively, and to 
recognize whenever a process variation reduction is achieved.

The previous example helped us to understand the different sources 
of variation in the measurement system, where to focus our attention to 
improve the measurement system, and how reliable the measurement 
 system is, based on the % P/T and % R&R metrics. 

Gage R&R metrics
% contribution of

variance component

Gage R&R

Operator

Part × operator

Reproducibility

Repeatability

Part variation

Total variation

7.76

4.37

0.00

4.37

3.39

92.24

100.00

Figure 6.2 Percent contribution of each component.

Gage R&R metrics % Gage R&R
% precision-to-

tolerance

Gage R&R 22.68 27.86

Figure 6.3 Percent precision-to-tolerance and percent gage R&R.
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6.4 SuMMAry

Every	 system	 has	 many	 sources	 of	 variation.	 Variation	 can	 come	 from	
machines, materials, methods, measurement instruments, people, and the 
environment,	 among	 other	 sources.	 Very	 often,	 these	 sources	 of	 varia-
tion are divided into two broad categories: the variation caused by the pro-
cess (part-to-part variation) and the variation caused by the measurement 
system. Specifically, the variation caused by the measurement system is 
divided into two subcategories: repeatability and reproducibility. Prior to 
engaging in any process variation reduction project, the sources of variabil-
ity in the measurement system must be identified and reduced. Figure 6.4 
summarizes the different sources of variation in our systems. 

Other metrics can be calculated as well: the percent precision-to- 
tolerance and the percent gage R&R. These metrics are important in evalu-
ating the reliability of our measurement system.

Overall variation

Variation due to gage

Repeatability

Variation due to operators

Reproducibility

Operator by partOperator

Measurement system variationPart-to-part variation

Figure 6.4 Sources of variation in a measurement systems analysis.
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7
Process Capability

7.1 Overview

Once the variation due to the measurement system has been minimized, we 
can measure the capability of our process to produce parts within the speci-
fication limits. The tool used to compare the process variation against the 
customer specifications is called the process capability analysis. 

In order to understand the concept of process capability, we need to 
consider two important aspects: first, the variation inherent in our process, 
known as process spread, and second, the variation allowed by the cus-
tomer, known as process specifications. A process capability analysis com-
bines both into a single graph, that is, how much the process varies and how 
much the customer allows it to vary. The process spread, also known as the 
voice of the process, is quantified by the standard deviation, σ. Particularly, 
the voice of the process is defined by the interval of ±3σ. As mentioned in 
section 4.5, in a normal distribution about 99.73% of the data is expected to 
fall within ±3σ from the mean. Specifically, in Chapter 11 we will use the 
“±3σ from the mean” concept to calculate the limits for the control charts. 
On the other hand, the voice of the customer is defined by the process spec-
ifications, particularly, the lower specification limit (LSL) and the upper 
specification limit (USL). Figure 7.1 shows the process capability concept. 

As long as the process spread is narrower than the process specifica-
tions, we can say that the process is capable, as shown in Figure 7.2. How-
ever, when the process spread is wider than the process specifications, we 
say the process is incapable, as shown in Figure 7.3.
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Process spread

50 55 60 65 70 75 80454035302520

USL
+3σ

LSL
–3σ

Process specifications

Figure 7.1 Voice of the process versus voice of the customer.

Process spread

50 55 60 65 70 75 80454035302520

Process specifications

Figure 7.2 Capable process.

Process spread

50 55 60 65 70 75 80454035302520

Process specifications

Figure 7.3 Incapable process.
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7.2 PrOCess CaPability and 
PrOCess PerfOrmanCe indiCes

In order to measure the process capability, we generally use four indices. 
These indices are known as Cp, Cpk, Pp, and Ppk. The former two indices, Cp 
and Cpk, are referred as capability indices, whereas the latter two indices, Pp 
and Ppk, are known as performance indices. The Cp and Pp indices are used 
whenever the process is centered, whereas the Cpk and Ppk indices are used 
whenever the process is not centered, that is, when the average is closer to 
one of the specification limits than the other. In this case, we will calculate 
two indices, Cpk upper and Cpk lower, or Ppk upper and Ppk lower, whichever 
applies. Then, the index with the lowest value will be selected. The ratio-
nale is that the index with the lower Cpk or Ppk shows to which side of the 
specification the process is shifting, that is, in which side of the specifica-
tion the process is producing more defects. When the process is centered, 
then the probability of producing defects is the same for each side of the 
specification limit. Of course, that assumption only holds true as long as the 
process follows a normal distribution. If the data are not normal, we would 
need to either transform the data or use a nonnormal capability analysis. 
These approaches will be discussed later. 

So far, we have mentioned which indices apply when the process is 
centered and which ones apply when the process is not centered. But, when 
do we use the process capability indices, Cp or Cpk, and when do we use the 
process performance indices, Pp or Ppk? The answer depends on whether 
we want to calculate the index for the long term or for the short term. The 
next question is, what is considered long-term and what is considered short-
term? The answer does not have anything to do with how long we have been 
collecting the data. 

What determines the short term and the long term is the way in which 
we calculate the process variability that goes in the denominator of the indi-
ces. Actually, there are two variability indices we will calculate: σR and σi. 
The σR value is used to calculate Cp and Cpk, whereas the σi value is used to 
calculate Pp and Ppk. The formulas for σR and σi are, respectively,

R

dRσ =
2

 and 
x x

ni
i∑( )

σ =
−
−1

2

Figure 7.4 shows the formulas that must be used to calculate each process 
capability and/or process performance index, based on: 
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 1. Whether the process is centered as compared to the  
specifications

 2. Whether we want to calculate the short-term capability or  
long-term performance indices

One important issue to note is that when the process is stable, both the Cp 
and Pp indices should be very similar, as well as the Cpk and Ppk indices. So, 
the decision of which index to use must be based on the estimate of variabil-
ity chosen: σR or σi. One important point must be stressed here: in order to 
perform a process capability analysis, the process must be in statistical con-
trol. That assumption must be met for all the statistical analyses that will 
be presented throughout the book. As will be seen in Chapter 11, when the 
process is in statistical control, there will only be common causes of varia-
tion present in the process; that is, we will have removed all the special or 
assignable causes from the process. An easy way to remember this point 
is through the following adage: “There is no capability without stability.” 
So, prior to performing the process capability analysis and drawing conclu-

Long-term
performance

Ppk = the smaller of:

Short-term
capability

Process is 
centered

Process is 
not centered

Cpk = the smaller of:

or
x

R

−
σ

USL
3

x

R

−
σ
LSL

3

Cp = 
R

−
σ

USL LSL
6

or
x

i

−
σ

USL
3

x

i

−
σ
LSL

3

Pp = 
i

−
σ

USL LSL
6

Figure 7.4 Process capability and process performance indices.

LSL USL

LSL USL

LSL USL



 Process Capability  65

sions from the calculated indices, make certain that the process is stable 
(in statistical control). This assumption can be verified through the use of  
a control chart. Most statistical software includes control charts as part  
of the process capability analysis. Remember, the next time that you see a 
process capability analysis, ask for the control charts and make certain that 
the process is in control. If the process is not in control, the calculated indi-
ces might not have any statistical meaning.

7.3 HOw tO interPret tHe 
PrOCess CaPability and PrOCess 

PerfOrmanCe indiCes

Many times, we hear about the misuse of process capability indices. 
Some companies use the Cpk index to determine when the process is capa-
ble, while other companies use the Ppk index to achieve the same goal.  
Neither Cpk nor Ppk can be used alone in order to determine how capable 
the process is. Each one (Cpk or Ppk) must be used in combination with the 
Cp or Pp in order to address the overall process capability. First, it must be 
understood that Cp and Pp only take into consideration the process specifi-
cation versus the process spread, as shown in Figure 7.4. It does not con-
sider the process centering. So, Cp and Pp will be used to determine process 
capability, regardless of process centering. On the other hand, Cpk and Ppk 
will be used to determine process centering, regardless of process capa-
bility.  Figure 7.5 provides an example of different scenarios that we might 
encounter and how each scenario will be interpreted. This is very important 
to know because each scenario will require a different approach to improve 
the process. For this example, we will only compare Cp and Cpk. However, 
the same approach can be used for Pp and Ppk. Remember that the difference 

Cp = 0.75

Cp = 1.33

Cp = 0.95

Cp = 1.33

Cpk = 0.75

Cpk = 0.95

Cpk = 0.75

Cpk = 1.33

Not capable
Centered

Capable
Not centered

Not capable
Not centered

Capable and
Centered

Figure 7.5 Interpretation of process capability and process performance
 indices.
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between Cp (or Cpk) and Pp (or Ppk) is the way in which we calculate the pro-
cess variability (σR or σi).

For instance, in the scenario where Cp = 0.75 and Cpk = 0.75, we can 
conclude that the process is not capable (since Cp < 1.0). However, since 
both Cp and Cpk are the same, we can conclude that the process is centered. 
In this case, our problem is about process variation. If we want to increase 
both Cp and Cpk, either the process specifications must be widened (less 
realistic) or the process spread must be narrowed (more realistic). On the 
other hand, in the scenario where Cp = 1.33 and Cpk = 1.33, we can conclude 
that the process is capable and centered. This is the ideal scenario.

Furthermore, in the scenario where Cp = 1.33 and Cpk = 0.95, we can 
conclude that the process is capable. However, since Cp and Cpk are not the 
same, we can conclude that the process is not centered. In this case, our 
problem is about process centering, not about process variation. If we want 
to increase the Cpk, we must center the process. One misconception lies in 
concluding that the process is incapable by having a Cpk index lower than 
1.0. As mentioned above, if the Cp is high (for example, Cp = 1.33) and the 
Cpk is low (for example, Cpk = 0.95), the process is still capable because  
the process spread is narrower than the process specifications. In this  
case, the process is fixed by just adjusting the centering. Here is an analogy 
to help remember this concept: as long as your car is narrower than your 
house’s garage, you are capable to park the car inside the garage, regard-
less of whether you center it or not. Not centering the car does not make 
the parking process incapable. The only fact that would make that process 
incapable is if your car is wider than the garage. In that case, even by cen-
tering the car in the garage, you will not be able to park the car inside the  
garage. 

Finally, the worst scenario is presented where Cp = 0.95 and Cpk = 0.75. 
In this scenario the process is neither capable nor centered. If we want to 
improve our process, we must first center it. In this way, both Cp and Cpk 
can be increased to 0.95 without any further changes. However, in order 
to increase the Cp and Cpk above the acceptable 1.33 value, we must either 
widen the process specifications (less realistic) or the process spread must 
be narrowed (more realistic). 

7.4 PrOCess CaPability analysis 
fOr nOnnOrmal data

Very often, organizations deal with processes that produce nonnormal data. 
So far, our analyses have focused on dealing with normal data. But what 
can we do when we obtain nonnormal data from our processes? The two 
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most common approaches are to transform the data (for example, using a 
Box-Cox transformation or Johnson transformation) or to obtain a probabil-
ity distribution for which the data make a fit. Out of those two approaches, 
we are going to develop an example using the Box-Cox transformation:

Let us suppose that a pharmaceutical company is analyzing the 
assay percent parameter for a certain product. The first graphical 
tool they used to analyze the data was a histogram and descriptive 
statistics summary, as shown in Figure 7.6. From the Anderson-
Darling normality test of such analysis, we can conclude that the 
data do not follow a normal distribution. This conclusion is based 
on the obtained p-value for the test of 0.0478. As mentioned ear-
lier, using a 95% confidence level, when the obtained p-value is 
lower than 0.05, we reject the hypothesis that the data follow a nor-
mal distribution. So, normality of the data is discarded. Figure 7.6 
shows that the data are positively skewed, or skewed to the right.

If we perform a process capability analysis, erroneously 
assuming the data follow a normal distribution, we would obtain 
the results shown in Figure 7.7. The Pp index for such data would 
be 1.31, and the Ppk index for the data would be 1.30. Both values 
do not differ much from the accepted value of 1.33. Furthermore, 
we can say the process is centered between the specification lim-
its because the Pp and the Ppk values are approximately the same. 
In terms of defective parts produced, the analysis shows approxi-
mately 90 parts per million defective.

In fact, based on the results, we would conclude that the pro-
cess is doing fairly well, and with a small reduction in the varia-
tion we could obtain Pp and Ppk values above 1.33. However, the 
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Figure 7.6 Histogram and descriptive statistics for nonnormal data example.
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 conclusion will be wrong because we assumed a normal distri-
bution for the data when, in fact, the data are skewed to the right. 
So, in order to obtain a more accurate result about the Pp, Ppk, and 
defective parts per million, we will perform an analysis using a 
Box-Cox transformation.

Transforming data means performing the same mathematical operation 
on each piece of original data. The statisticians George Box and David 
Cox developed a procedure to identify an appropriate exponent (lambda, or 
λ-value) to use to transform data into a “normal shape.” The λ-value indi-
cates the power to which all data should be raised. In order to do this, the  
Box-Cox power transformation searches from λ = –5 to λ = +5 until  
the best value is found. Using the Box-Cox power transformation in a sta-
tistical analysis software program provides an output that indicates the best 
λ-values. 

For our example, a Box-Cox transformation was performed using sta-
tistical software, obtaining an optimal λ-value = –5. This means that all 
data values (Y) will be raised to a power of –5, or a transformed value equal 
to Z = Y–5. The same transformation we performed on the individual values 
has to be performed on the specification limits, USL and LSL. A standard 
deviation will be calculated from the transformed data, and the Cp, Cpk, Pp, 
or Ppk indices can be calculated as shown earlier in Figure 7.4. Doing such 
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Figure 7.7 Normal process capability analysis for nonnormal data example.

Performance indices using overall StDev
Pp

Ppu
Ppl
Ppk

Cpm

1.31
1.30
1.31
1.30

Expected overall performance
ppm > USL
ppm < LSL
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% total
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calculations for the Pp and Ppk indices, we obtain Pp = 1.38 and Ppk = 1.14, 
as shown in Figure 7.8. 

The values obtained in Figure 7.8 differ from the Pp = 1.31 and Ppk = 
1.30 obtained in Figure 7.7, when we assumed the data followed a  normal 
distribution. Furthermore, for the analysis assuming normal data, we 
obtained approximately 90 defective parts per million. However, based on 
the analysis with the Box-Cox transformation, approximately 312 defec-
tive parts per million are produced in this process. This means more than 
three times the expected defective parts per million when compared with 
the first analysis.

Although the Box-Cox power transformation is frequently used to 
transform nonnormal data, it is not a guarantee for normality. This is 
because it actually does not really check for normality. The method checks 
for the smallest standard deviation. The assumption is that among all trans-
formations with λ-values between –5 and +5, transformed data has the 
highest likelihood (but not a guarantee) to be normally distributed when 
the standard deviation is the smallest. Therefore, it is absolutely necessary 
to always check the transformed data for normality using a probability plot. 
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Figure 7.8 Box-Cox transformation process capability analysis for nonnormal
 data example.
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In our example, the Anderson-Darling normality test’s p-value for the orig-
inal data was 0.0478, and for the Box-Cox transformed data is 0.1549, as 
presented in Figure 7.9. Based on this, we can not reject the hypothesis that 
the transformed data follow a normal distribution.

7.5 PerfOrming a PrOCess 
CaPability analysis

Let us now perform a complete process capability analysis to evaluate the 
current status of a process and evaluate the status of such process after an 
improvement project has been completed:

A cough syrup manufacturer is facing some quality problems in 
their filling process. During the sealing process, some overfilled 
bottles are not sealing completely. In order to evaluate the current 
status for the net weight parameter, a histogram and descriptive 
statistics summary was developed. The summary is presented in 
Figure 7.10.

An individuals and moving range (ImR) chart was developed 
in order to determine whether the process is stable, that is, if only 
common causes of variation are present. Remember that prior to 
performing a process capability analysis, you need to make cer-
tain that the process is in statistical control. Or, said in another 
way, “There is no capability without stability,” as you remember. 
The resulting individuals and moving range chart is presented in 
Figure 7.11.

Now that we know that only common causes of variation are 
present in our process, we can proceed with the capability anal-
ysis. Since the Anderson-Darling normality test in Figure 7.10 
shows a p-value greater than 0.05, a normal capability analysis 

Anderson-Darling normality tests

AD normality transformed data

AD normality p-value transformed data

AD normality original data

AD normality p-value original data

0.541699

0.1549

0.746762

0.0478

Figure 7.9 Normality test for original data and Box-Cox transformed data.
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will be performed for the data. Figure 7.12 shows the capability 
analysis results for the net weight parameter.

As you can observe in Figure 7.12, the process is capable (Cp = 
1.47); however, it is not centered between the specifications (Cpk = 
1.13). Furthermore, it can be observed that the average is shifted to 
the right of the target value of 100 ml. It is such a shift toward the 
upper specification limit that is causing the overfilling problem. 
During a brainstorming session, it was identified that the process 
was intentionally set toward the upper specification limit because 
some complaints about underfilled bottles were received during 
the previous year.

So, the improvement team is faced with two opportunity areas: 
(1) eliminating the problem caused by improperly sealed bottles, 
while (2) eliminating any possibility of a complaint due to under-
filled bottles. After various design of experiments (to be discussed 
in Chapter 10) were performed, the proper machine settings were 
established in order to achieve the target of 100 ml while reducing 
the variation within the filling process. The results for the next 50 
bottles after the improvement, along with the 31 bottles before the 
improvement, are shown in Figure 7.13. 

It can be seen in Figure 7.13 that a decrease in the net weight 
was achieved from the improvement project, as well as a major 

0

1

2

3

6

LSL = 95 USL = 105

5

4

94
.6

95
.3

96
.0

96
.7

97
.3

98
.0

98
.7

99
.4

10
0.

1
10

0.
7

10
1.

4
10

2.
1

10
2.

8
10

3.
4

10
4.

1
10

4.
8

10
5.

5

Net weight (mL)

Process capability report: Net weight (mL)
Count
Mean

StDev (overall, long term)
StDev (within, short term)

USL
Target

LSL

31
101.16
1.427
1.132

105

95

Figure 7.12  Normal process capability analysis for net weight.
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decrease in the variability of the filling process. In order to deter-
mine the effect of such improvements on the Cp and Cpk indices, 
a process capability analysis was performed, as shown in Figure 
7.14. After the improvent project, the Cp index went from 1.47 to 
3.67, while the Cpk index went from 1.13 to 3.67. Now the process 
is capable and meeting its target value. Furthermore, the defective 
parts per million were reduced from approximately 3552 bottles to 
zero, as shown in Figure 7.14.

Now that we know how to evaluate and optimize our measurement systems 
and how to determine if our processes are capable, we can proceed to make 
comparisons between population means, medians, variances, and/or pro-
portions through the hypothesis tests.

7.6 summary

The process capability analysis is used to compare the process spread 
against the process specifications and evaluate how capable the process is 
for producing within those specification limits. Prior to performing a pro-
cess capability analysis, we need to make certain the process is in statisti-
cal control. In order to verify that such assumption is met, a control chart 
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can be used. Remember that “there is no capability without stability.” Once 
we know the process is in statistical control, we need to evaluate normality 
of the data to determine if we are going to use a normal capability analysis 
or a nonnormal capability analysis (or maybe use a transformation of the 
data). Then, we need to decide which indices to calculate: Cp and Cpk, or Pp 
and Ppk. Just remember that the main difference in the calculation of these 
indices is which estimate of the variation to use: σR or σi. The σR is used 
to calculate Cp and Cpk, while the σi is used to calculate Pp and Ppk. Once 
the indices are calculated, we can translate that result into defective parts 
per million produced by the process. The obtained results can then be used 
as a baseline for our process variation reduction projects. Let us start the 
reasoning for potential projects by making comparisons between different 
groups, using a tool called hypothesis testing.
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8
Hypothesis Testing

8.1 Overview

A hypothesis test is a method of making decisions using data from our pro-
cesses. In statistics, a result is called statistically significant if it is unlikely 
to have occurred by common causes of variation alone, according to a pre-
determined threshold probability called the significance level. Hypothesis 
tests answer the question “Assuming that the null hypothesis is true, what 
is the probability of observing a value for the test statistic that is at least 
as extreme as the value that was actually observed?” That probability is 
known as the p-value. In simple terms, the p-value might be interpreted as 
the confidence we have in the null hypothesis.

If the p-value is less than the required significance level, then we  
say the null hypothesis is rejected at the given level of significance. Rejec-
tion of the null hypothesis is a conclusion. This is like a “guilty” verdict in 
a criminal trial (the evidence is sufficient to reject innocence, thus prov-
ing guilt). Under this scenario, we might accept the alternate hypothesis. If 
the p-value is not less than the required significance level, then the test has 
no result. The evidence is insufficient to support a conclusion. This is like 
a jury that fails to reach a verdict, because guilt was not proven beyond a 
reasonable doubt. To summarize, here is a slogan you can use to remember 
when to reject or fail to reject the null hypothesis (H0): “If p-value is low, 
the null hypothesis must go.” In other words, when the p-value for the null 
hypothesis is lower than a predetermined value, then the null hypothesis 
must be rejected.

Whether rejection of the null hypothesis truly justifies acceptance of 
the alternate hypothesis depends on the structure of the hypotheses. Reject-
ing the hypothesis that a large bite originated from a tiger does not imme-
diately prove the existence of a gargoyle. Hypothesis testing emphasizes 
the rejection, which is based on a probability, rather than the acceptance, 
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which requires extra steps of logic. When dealing with hypothesis testing, 
there are four decisions that can be made. Two of those decisions are correct 
decisions, while two of them are wrong decisions. In statistics, those wrong 
decisions are called type I error and type II error. Figure 8.1 shows the con-
cept of these four possible decisions, using an example about the acceptance 
or rejection decision to be made on a production lot:

In any manufacturing process, the assumption must be that all lots 
produced comply with the quality requirements; that is, our null 
hypothesis is that the lots are good. Based on that assumption, 
the alternate hypothesis would be the opposite; that is, the lots 
are defective. Whenever an inspector is faced with a lot (good or 
defective) he or she can make one of two decisions: either to reject 
the lot or to accept the lot (which in hypothesis testing terms would 
be “fail to reject the lot”).

Taking a look at Figure 8.1, let us first explore the two good 
decisions. If an inspector receives a good lot and accepts it (fail to 
reject), that would be a good decision. The probability of failing 
to reject a good lot can be calculated as 1 – α, which we expect to 
be a very high probability. In this instance, the good decision will 
be called the producer’s confidence because such decision will be 
very beneficial to the producer of that lot. The opposite (reject-

Type I error

Probability = α

Producer’s risk

Decision:
Reject the lot

Good decision

1 – β

Consumer’s confidence

Good decision

1 – α

Producer’s confidence

Decision:
Fail to reject the lot

Null hypothesis:
Good lot

Alternate hypothesis:
Defective lot

Type II error

Probability = β

Consumer’s risk

Figure 8.1 Possible decisions in the acceptance or rejection of a lot.
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ing a good lot) would be called the producer’s risk, as I will dis-
cuss later. The second good decision in our example would be to 
reject a defective lot. The probability of rejecting a defective lot 
can be calculated as 1 – β , which we also expect to be a very high 
 probability. In this instance, the good decision will be called the 
consumer’s confidence because such decision will be very bene-
ficial to the consumer of that lot. The opposite (failing to reject a 
defective lot) would be called the consumer’s risk, as will be dis-
cussed later.

Let us take a look now at the two wrong decisions, namely 
type I error and type II error. Whenever an inspector rejects a good 
lot, he or she is making a type I error. The probability of that error 
is established by a value called α, which we expect to be a very 
low probability. In this instance, the wrong decision will be called 
the producer’s risk because such decision will be very detrimen-
tal to the producer of that lot. The second wrong decision in our 
example would be to fail to reject a defective lot. Such probability 
is established as β, which we also expect to be a very low prob-
ability. In this instance, the wrong decision will be called the con-
sumer’s risk because such decision will be very detrimental to the 
consumer of that lot.

So, the obvious question is “Which of these errors is more important to 
avoid?” The answer is that both errors are important. However, guarding 
against one type of error could result in an increase in the other type of 
error. The best strategy to reduce both errors is to increase the sample size 
to perform the appropriate hypothesis test. Doing so will allow us to detect 
smaller shifts due to nonrandom causes of variation. 

Prior to performing any hypothesis test, there are some assumptions 
that must be satisfied. For instance, when dealing with variable or continu-
ous data, the assumption is that the data follow a normal distribution. If data 
are not normal, you would probably have to perform a transformation of the 
data, as previously mentioned.

When we are comparing groups from different populations, the fol-
lowing assumptions must be satisfied:

•	 Samples	are	independently	collected.

•	 Samples	are	obtained	randomly.

•	 Samples	are	representative	of	the	population.

When we are comparing groups from different processes, the following 
assumptions must be satisfied:
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•	 Each	process	is	stable.

•	 There	are	no	special	causes	or	shifts	over	time.

•	 Samples	are	representative	of	the	process.

Now that we know the basics about hypothesis testing, let us explore some 
tests to compare means, medians, and variances. In Section 5.9 we dis-
cussed the importance of assessing the normality of the data in order to 
determine which type of tests we have available to compare groups. When 
the data follow a normal distribution, the set of tests to compare groups is 
called parametric testing. When the data do not follow a normal distribu-
tion, the set of tests is called nonparametric testing. Let us start with the 
most common parametric tests, those used to compare means.

8.2 COmparing means

The four most common tests to compare means when the data follow a nor-
mal distribution are one-sample t-test, two-sample t-test, one-way ANOVA 
test, and two-way ANOVA test. The choice about which test must be used 
has to do mainly with how many means we want to compare: one mean 
against a fixed value, one group’s mean against another group’s mean, or 
the means among three or more groups.

8.2.1 One-sample t-Test

The simplest test is when we compare one group’s mean against a fixed 
value. That fixed value could be a specification, a standard, a target value, 
an improvement value, and so on. Let us illustrate the application of the 
one-sample t-test with an example:

Three months ago, a company implemented a new CAPA inves-
tigation process after a massive training. The company wants to 
know if the training is paying off, that is, if the average closure 
time for the investigations has decreased significantly. Before 
training, average closure time was 20 days. Figure 8.2 shows the 
results of the one-sample t-test using statistical software.

It can be noted that the mean cycle time of the 100 samples 
taken after the training’s completion was reduced from 20 days to 
10.36 days. The question: “Is the observed difference the result 
of the training or just the result of common causes of variation?” 
The null hypothesis was established as a mean cycle time equal to 
20 days, while the alternate hypothesis was established as a mean 
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cycle time of less than 20 days, which is what we would expect. 
Recall from Section 8.1 that the criterion to determine if the null 
hypothesis will be rejected or not is going to be the p-value. In that 
section I mentioned that “if p-value is low, H0 must go.” In our 
examples, for consistency purposes, I will use a producer’s confi-
dence of 95%, which means that α = 0.05, or a significance level 
of 5%.

Taking a look at Figure 8.2, the obtained p-value = 0.0000 
(not necessarily zero, but a very small number). We already men-
tioned that if the p-value is less than the required significance 
level, then we say the null hypothesis is rejected at the given level 
of significance. In this example, we reject the null hypothesis and 
conclude that the observed investigation cycle time of 10.36 days 
after the training is significantly different than the original 20 
days. Thus, it can be concluded that training has paid off because 
the investigation cycle time has been reduced significantly based 
on the training.

8.2.2 Two-sample t-Test

If instead of comparing one group’s mean against a target value we want to 
compare the means of two groups, then we can not use a one-sample t-test, 
but must use a two-sample t-test. As mentioned earlier, one assumption in 
performing a two-sample t-test is that the data follow a normal distribution. 
Prior to performing a two-sample t-test, we also need to evaluate the vari-
ances of each of the two groups. This is an important prerequisite because 

One-sample t-test

Test information
H0: Mean (Mu) = 20
Ha: Mean (Mu) less than 20

Results Cycle time (days)
Count 100
Mean 10.360
StDev 6.965
SE Mean 0.696531
t –13.840
p-value (1-sided) 0.0000
UC (1-sided, 95%) 11.517

Figure 8.2 One-sample t-test example.



82  Chapter Eight

the data crunching process will be different for the case when the variances 
are assumed to be equal or when the variances are assumed to be unequal. 
To address the variances, we need to use an F-test or Bartlett’s test, as will 
be discussed later. The following example will illustrate the concept of a 
two-sample t-test.

A company wants to compare how long it takes (in hours) for each 
shift in the quality control laboratory to perform an analytical test 
on a specific product. There are two shifts: shift 1 and shift 2. A 
given test is selected, and the times to complete that test are col-
lected and analyzed with statistical software. 

As mentioned, we need to evaluate each group’s variance 
prior to performing the two-sample t-test. Figure 8.3 shows  
the results from Bartlett’s test for equal variances. In this case, the 
null hypothesis is that all groups’ variances are equal (or no sig-
nificant difference exists between the variances), while the alter-
nate hypothesis is that at least one group’s variance is different. 
The same approach as for the comparison of the p-value with the 
significance level will be used. Remember that we will be using 
a significance level α = 0.05. Figure 8.3 shows that shift 1 has a 
standard deviation of 0.6967, while shift 2 has a standard devia-
tion of 0.4719. Are they significantly different? Taking a look at 
the p-value, we can observe that it is 0.0218. Using a significance 

Bartlett’s test for equal variance: duration (hours)
(Use with normal data)

Test information
H0: Variance 1 = Variance 2 = . . . = Variance k
Ha: At least one pair Variance i ≠ Variance j

Shift 1 2
Count 31 42
Mean 3.526 4.306
Median 3.570 4.375
StDev 0.696743 0.471918
AD normality test p-value 0.4241 0.2521

Bartlett’s test statistic 5.264
p-value 0.0218

Figure 8.3 Bartlett’s test.
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level of 0.05, we reject the null hypothesis and conclude that the 
variances are different.

Once we determine through Bartlett’s test that the variances 
are not equal, we proceed to analyze the means of both groups. 
Remember that in the statistical software that you use for the anal-
ysis, you will have to select a check box specifiying “Assume 
unequal variances.” Performing a two-sample t-test in a statistical 
software application, we obtain the results presented in Figure 8.4. 
Notice that the null hypothesis is that the mean difference is equal 
to zero. In other words, the null hypothesis is that the difference 
in the means is not significant. On the other hand, the alternate 
hypothesis is that the mean difference is not equal to zero; that is, 
the means are significantly different.

Figure 8.4 shows that the mean duration for the particular 
test for shift 1 is 3.526 hours, while the mean duration for shift 
2 is 4.306 hours. Is that difference significant enough? Taking 
a look at the p-value, the analysis shows that it is again 0.0000 
(not necessarily zero, but a very small value). Since the p-value is 
less than the required significance level, we say the null hypoth-
esis is rejected at the given level of significance. In this example,  
we reject the null hypothesis and conclude that the observed dif-
ference in test duration for shift 1 versus shift 2 is significant. 
Thus, it can be concluded that shift 1 is completing the test in a 
significantly shorter time than shift 2. 

Two-sample t-test: duration (hours)

Test information
H0: Mean difference = 0
Ha: Mean difference ≠ 0
Assume unequal variance

Shift 1 2
Count 31 42
Mean 3.526 4.306
StDev 0.6967 0.4719

p-value (2-sided) 0.0000

Figure 8.4 Two-sample t-test.
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8.2.3 One-way anOva Test

If, instead of comparing one group’s mean against a target value (or com-
paring the means of two groups), we want to compare the means of three or 
more groups, we can use an analysis of variance (ANOVA) test. ANOVA 
is a statistical test that uses variances to compare multiple averages simul-
taneously. Instead of comparing pairwise averages, it compares the vari-
ance between groups with the variance within groups. The between-group  
variance is obtained from the variance of the group averages, while the 
within-group variance is obtained from the variance between values within 
each group and then pooled across the groups.

As mentioned earlier, one assumption in performing an ANOVA test is 
that the data follow a normal distribution. Prior to performing an ANOVA 
test, we also need to evaluate the variances of each of the groups. This is 
an important prerequisite because for the ANOVA test, the variances are 
assumed to be equal. To address the variances, we need to use an F-test or 
Bartlett test, as will be discussed later. The following example will illus-
trate the concept of an ANOVA test:

A company wants to compare the performance of three shifts 
in terms of the manufacturing cycle time to determine if there 
are significant differences in their averages. After verifying the 
assumptions related to normality of the data and equal variances, 
the box plots shown in Figure 8.5 are developed. The dotted lines 

Figure 8.5 Box plots for manufacturing cycle time comparison example.
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in the box plots represent the averages, while the solid lines repre-
sent the medians. It can be seen that, within each shift, the median 
and average are approximately the same. In a normal distribution, 
the average, median, and mode are similar. So, the data appear to 
follow the normal distribution. Also, the variability between the 
three shifts does not differ significantly. So, we can see graphi-
cally how the equal variances assumption is met. Furthermore, 
the averages among shifts also appear to be similar; that is, no 
significant difference can be observed between the three shifts. 
Although the averages apparently are not significantly different, 
an ANOVA test will be performed in order to obtain a statistical 
solution.

The ANOVA table shown in Figure 8.6 presents the averages 
for each of the three shifts: 50.26 minutes for shift 1, 49.12 min-
utes for shift 2, and 47.44 minutes for shift 3. Is there any differ-
ence between those averages? The null hypothesis for an ANOVA 
test is that all the averages are the same (no significant difference 
between the averages), while the alternate hypothesis is that at 
least one average is statistically different. As can be seen in  Figure 
8.6, the p-value for the ANOVA test is 0.2015. So, we conclude that 
there is not enough evidence to reject the null hypothesis. In other 
words, there is no statistical difference between the manufacturing 
cycle times for the three shifts.

One-way ANOVA and means matrix: cycle time

Test information
H0: Mean 1 = Mean 2 = . . . = Mean k
Ha: At least one pair Mean i ≠ Mean j

Shift 1 2 3
Count 31 42 27
Mean 50.26 49.12 47.44
StDev 5.721 5.865 6.296

ANOVA table
Source SS DF MS F p-value
Between 114.95 2 57.477 1.629 0.2015
Within 3423.0 97 35.289

Total 3538.0 99

Figure 8.6 ANOVA test for manufacturing cycle time comparison example.
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Let me illustrate the concept with another example:

Although it was proven that the average manufacturing cycle 
time for each shift was not statistically different, the performance 
among the shifts does not appear to be the same. For that reason, 
the company developed a quality index to measure their perfor-
mance. The index is based on a scale of 1 to 5, where 1 means 
poor performance and 5 means excellent performance. Figure 8.7 
shows the box plots for the quality index of each shift. As with 
the manufacturing cycle times example, the averages and medians 
within each shift are very similar. So, the normality assumption 
can be observed graphically. However, as mentioned earlier, do 
not rely only on the graphical evaluation of the data; you need to 
perform an analytical evaluation of the data using the Anderson- 
Darling normality test or similar analysis. Also, variability 
between the shifts also appears to be very similar when analyzed 
graphically. But remember that in real life you will be analyzing 
the equality of variances through an F-test or Barlett test, not just 
through a graphical analysis. However, when we analyze graphi-
cally the averages among the three shifts, certain differences can 
be observed, as shown in Figure 8.7.

Taking a look at the box plots in Figure 8.7, a higher value for 
the average of shift 2 is noticeable. On the other hand, the aver-
ages for shift 1 and shift 3 do not differ so much. The  statistical 

Figure 8.7 Box plots for quality index comparison example.
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 significance of this difference will be analyzed through an 
ANOVA test. The table shown in Figure 8.8 presents the quality 
index averages for each of the three shifts: 3.39 for shift 1, 4.21 
for shift 2, and 3.64 for shift 3. Is there any difference between 
these averages? The null hypothesis for an ANOVA test is that all  
the averages are the same (no significant difference between the 
averages), while the alternate hypothesis is that at least one average 
is statistically different. As can be seen in Figure 8.8, the p-value 
for the ANOVA test is 0.0000. So, we reject the null hypothesis. 
In other words, there is statistical difference between the quality 
indexes for the three shifts.

8.2.4 Two-way anOva Test

What if, instead of comparing different groups of one factor (for example, 
machine), we want to compare different groups of two factors (for exam-
ple, machine and material). In this case, we can use the two-way ANOVA.  
This analysis is an extension to the one-way ANOVA. There are two inde-
pendent variables (hence the name two-way ANOVA). In order to perform 
this type of analysis, certain assumptions must be met: (1) the populations 
from which the samples were obtained must be normally or approximately 
normally distributed; (2) the samples must be independent; (3) the vari-
ances of the populations must be equal; and (4) the groups must have the 
same sample size. 

One-way ANOVA and means matrix: quality index

Test information
H0: Mean 1 = Mean 2 = . . . = Mean k
Ha: At least one pair Mean i ≠ Mean j

Shift 1 2 3
Count 31 42 27
Mean 3.39 4.21 3.64
StDev 0.825 0.621 0.670

ANOVA table
Source SS DF MS F p-value
Between 12.700 2 6.350 12.856 0.0000
Within 47.912 97 0.493943

Total 60.612 99

Figure 8.8 ANOVA test for quality index comparison example.
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There are three sets of hypotheses with the two-way ANOVA. The null 
hypotheses for each of the sets are:

•	 The	population	means	of	the	first	factor	are	equal.	This	is	like	 
the one-way ANOVA for the row factor.

•	 The	population	means	of	the	second	factor	are	equal.	This	is	 
like the one-way ANOVA for the column factor.

•	 There	is	no	interaction	between	the	two	factors.	This	is	similar	 
to performing a test for independence.

Let us explain the two-way ANOVA with an example:

A company is evaluating certain suppliers of a specific material 
to be used in their molding process. There are three suppliers for 
that material. Moreover, the company has four machines in which 
the parts can be molded, each machine from a different manufac-
turer. So, the company would like to learn if there are significant 
differences in the suppliers (materials) and the machines. In order 
to analyze this, each material is used in each machine to produce 
a molded part. Then, a two-way ANOVA is performed. The first 
factor is machine, while the second factor is material. Figure 8.9 
shows the box plots for machines and materials.

The specification for the weight of the molded part ranges 
from 1.5 to 2.5 g. The box plots for machine in Figure 8.9 show 
that the weights for machine 1, machine 2, and machine 3 behave 
in a similar way; that is, their average and variation are very simi-
lar. However, although the variation for machine 4 seems similar to 
that of the other machines, its average goes above the upper speci-
fication limit. When analyzing the box plots for  material ( supplier) 

Figure 8.9 Box plots for machine and material example.
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in Figure 8.9, the weights’ averages and variability look very simi-
lar. Figure 8.10 shows the two-way ANOVA for this example.

The null hypothesis for the first factor (machine) is that 
their averages are not significantly different, whereas the alter-
nate hypothesis is that their averages are significantly different. 
Since the p-value for machine is lower than the alpha value of 
0.05 (p-value = 0.0000), we reject the null hypothesis and con-
clude that at least one of the machine’s averages is different. Guess 
which one? Machine 4, of course. What about the material’s aver-
ages? The null hypothesis for the second factor (material) is that 
their averages are not significantly different, whereas the alter-
nate hypothesis is that their averages are significantly different. 
Since the p-value for material is higher than the alpha value of 
0.05 (p-value = 0.4296), we do not have evidence to reject the 
null hypothesis. Data do not show there is statistical difference 
between the averages for the materials. However, from a practi-
cal point of view, the box plots for material in Figure 8.9 show that 
material A is the one that produced a part that is more centered 
within the specification limits. So, from a business perspective, 
material A must be selected.

However, there is another aspect we need to consider: the 
interactions. As will be seen in Chapter 10, an interaction occurs 

Two-way ANOVA: weight

Test information
H0 (factor machine): Mean 1 = Mean 2 = . . . = Mean k
Ha (factor machine): At least one pair Mean i ≠ Mean j

H0 (factor material [supplier]): Mean 1 = Mean 2 = . . . = Mean k
Ha (factor material [supplier]): At least one pair Mean i ≠ Mean j

H0 (interaction): There is no interaction between factors X1 and X2
Ha (interaction): There is an interaction between factors X1 and X2

ANOVA table
Source DF SS MS F p-value
Machine 3 11.951 3.984 12.960 0.0000
Material (supplier) 2 0.526059 0.263030 0.855689 0.4296
Interaction 6 1.295 0.215909 0.702395 0.6486
Error 67 20.595 0.307389

Total 78 34.821 0.446418

Figure 8.10  Two-way ANOVA test for machine and supplier example.
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when the behavior of one factor may be dependent on the level 
of another factor. In our example, an interaction would exist if 
the result depends on which combination of machine and mate-
rial is used. The null hypothesis for the interaction is that it is 
not significant, whereas the alternate hypothesis is that it is sig-
nificant. Since the p-value for the interaction is higher than the 
alpha value of 0.05 (p-value = 0.6486), we do not have evidence to 
reject the null hypothesis. Data do not show that the interaction of 
machines and materials is significant. In summary, the company 
should purchase material A and could produce the part in machine 
1, machine 2, or machine 3. 

8.3 COmparing medians

So far, we have been performing hypothesis tests for data that follow the 
normal distribution. But what if the data do not follow a normal distribu-
tion? In that case, we can either transform the data or run a nonparametric 
test, as discussed in Section 5.9. We will explain the latter approach in this 
chapter. The three nonparametric tests that will be explained are the one-
sample sign test, two-sample Mann-Whitney test, and Kruskal-Wallis test.

8.3.1 One-sample sign Test

The one-sample sign test is a nonparametric equivalent to the one- sample 
t-test. The nonparametric tests are performed whenever the data do not 
 follow the normal distribution. Recall that whenever the data follow the 
normal distribution, we can use either the average, the median, or the mode 
as the measure of central tendency because all of them are very similar. 
However, when the data do not follow the normal distribution (that is, the 
data are skewed), then we need to use the median instead of the average 
because the median is less impacted by outliers than the average.

Let us illustrate the use of the one-sample sign test with an example:

The median cycle time for investigation has been 25 days (50% of 
investigations needed more than 25 days to be completed). After 
new root cause analysis training, three months of data were used 
to evaluate the improvement (if any). Figure 8.11 shows the results 
of the one-sample sign test using statistical software.

It can be noted that the median for the investigation cycle 
time of the 100 samples taken after the training’s completion was 
reduced from 25 days to 9 days. The question might be “Is the 
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observed difference the result of the training or just the result of 
common cause variation?” The null hypothesis was established 
as a median equal to 25 days, while the alternate hypothesis was 
established as a median of less than 25 days, which is what we 
would expect. Recall from Section 8.1 that the criterion to deter-
mine if the null hypothesis will be rejected or not is going to be 
the p-value. In that section I mentioned that “if p-value is low, H0 
must go.” In our examples, for consistency purposes, I will use a 
producer’s confidence of 95%, which means that α = 0.05, or a sig-
nificance level of 5%.

Taking a look at Figure 8.11, the obtained p-value = 0.0000 
(not necessarily zero, but a very small number). We already men-
tioned that if the p-value is less than the required significance 
level, then we say the null hypothesis is rejected at the given level 
of significance. In this example, we reject the null hypothesis and 
conclude that the observed investigation cycle time of 9 days after 
the training is significantly different than the original 25 days. 
Thus, it can be concluded that training has paid off because the 
investigation cycle time has been reduced significantly based on 
the training.

8.3.2 Two-sample mann-whitney Test

The two-sample Mann-Whitney test is a nonparametric equivalent to the  
two-sample t-test. The nonparametric tests are performed whenever  
the data do not follow the normal distribution. The two-sample Mann-

One-sample sign test

Test information
H0: Median = 25
Ha: Median less than 25

Results Days after
Count (N) 100
Median 9
Points below 25 93
Points equal to 25 1
Points above 25 6
p-value (1-sided) 0.0000

Figure 8.11  One-sample sign test example.
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Whitney test compares the medians of two groups. Let us illustrate the use 
of this test with an example:

A pharmaceutical company wanted to determine if there are sig-
nificant differences in the hardness of the tablet they manufacture 
using two different pieces of equipment. In order to analyze this, a 
period of one year of production was collected from each machine. 
After performing a normality test, it was noticed that data do not 
follow the normal distribution. The histograms in  Figure 8.12 
show a p-value for the Anderson-Darling normality test of 0.0000 
for each machine, indicating that the data do not follow the  normal 
distribution.

Since the data do not follow a normal distribution, a two- 
sample Mann-Whitney test was performed with the data to com-
pare the two medians. Figure 8.13 shows the results of the test, 
in which a p-value of 0.0000 was obtained. A p-value lower than 
0.05 for this test indicates that the medians of each of these popu-

Average hardness—Machine 2

Average hardness—Machine 2

Count = 270
Mean = 9.081
Stdev = 0.242565
Range = 1.20

Minimum = 8.400
25th percentile (Q1) = 8.900
50th percentile (median) = 9.100
75th percentile (Q3) = 9.300
Maximum = 9.6

95% CI mean = 9.05 to 9.11
95% CI sigma = 0.22 to 0.26

Anderson-Darling normality test:
A-squared = 2.448
p-value = 0.0000

Average hardness—Machine 1

Count = 230
Mean = 8.820
Stdev = 0.486920
Range = 2.70

Minimum = 6.900
25th percentile (Q1) = 8.675
50th percentile (median) = 8.900
75th percentile (Q3) = 9.100
Maximum = 9.6

95% CI mean = 8.76 to 8.88
95% CI sigma = 0.45 to 0.54

Anderson-Darling normality test:
A-squared = 10.383
p-value = 0.0000
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Figure 8.12  Histogram and descriptive statistics for tablet hardness example.
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lations are statistically different. The obtained value indicates that 
the difference in the median (8.90 kp for machine 1 and 9.10 kp 
for machine 2) is due to some special cause(s). Such difference in 
the medians is not the result of natural process variability. So, it 
must be investigated why machine 2 is providing a higher hard-
ness than machine 1.

8.3.3 Kruskal-wallis Test

The Kruskal-Wallis test is a nonparametric equivalent to the one-way 
ANOVA test. The nonparametric tests are performed whenever the data do 
not follow the normal distribution. The Kruskal-Wallis test is used for com-
paring more than two samples that are independent, or not related. The null 
hypothesis is that the populations from which the samples originate have 
the same median. When the Kruskal-Wallis test leads to significant results, 
then at least one of the samples is different from the other samples. The 
test does not identify where the differences occur or how many differences 
actually occur. It is an extension of the two-sample Mann-Whitney test  
for comparing three or more groups. The two-sample Mann-Whitney  
test would help analyze the specific sample pairs for significant differences.

Since it is a nonparametric method, the Kruskal-Wallis test does not 
assume a normal distribution, unlike the analogous one-way ANOVA. 
However, the test does assume an identically shaped and scaled distribution 
for each group, except for any difference in medians.

Let us explain the Kruskal-Wallis test through an example:

A pharmaceutical company wanted to analyze three different sup-
pliers of a fluid used in their manufacturing process in order to 

Two-sample Mann-Whitney test: average hardness

Test information
H0: Median difference = 0
Ha: Median difference ≠ 0

Machine 1 2
Count 230 270
Median 8.90 9.10

Mann-Whitney statistic 46569.50
p-value (2-sided, adjusted for ties) 0.0000

Figure 8.13  Two-sample Mann-Whitney test for table hardness example.
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select one of them. A critical characteristic of the fluid is viscos-
ity, measured in centipoise (cP). The specifications for the vis-
cosity of the fluid range from 2.4 to 3.6 cP. Data from the three 
suppliers were analyzed and a histogram and descriptive statis-
tics of them generated. Figure 8.14 shows the results for the three 

Viscosity—Supplier C

Viscosity—Supplier C

Count = 27
Mean = 2.732
Stdev = 0.315907
Range = 0.99

Minimum = 2.250
25th percentile (Q1) = 2.466
50th percentile (median) = 2.661
75th percentile (Q3) = 3.018
Maximum = 3.24111134

95% CI mean = 2.61 to 2.86
95% CI sigma = 0.25 to 0.43

Anderson-Darling normality test:
A-squared = 0.787686
p-value = 0.0358
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Viscosity—Supplier B

Viscosity—Supplier B

Count = 20
Mean = 3.033
Stdev = 0.156289
Range = 0.4400

Minimum = 2.839
25th percentile (Q1) = 2.917
50th percentile (median) = 2.982
75th percentile (Q3) = 3.233
Maximum = 3.27863303

95% CI mean = 2.96 to 3.11
95% CI sigma = 0.12 to 0.23

Anderson-Darling normality test:
A-squared = 1.162
p-value = 0.0037
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Viscosity—Supplier A

Viscosity—Supplier A

Count = 30
Mean = 3.206
Stdev = 0.431866
Range = 1.54

Minimum = 2.220
25th percentile (Q1) = 3.069
50th percentile (median) = 3.300
75th percentile (Q3) = 3.521
Maximum = 3.75838254

95% CI mean = 3.05 to 3.37
95% CI sigma = 0.34 to 0.58

Anderson-Darling normality test:
A-squared = 1.181
p-value = 0.0037

0

1

2

3

4

8

7

6

5

2.
22

2.
36

2.
50

2.
64

2.
78

2.
92

3.
06

3.
20

3.
34

3.
48

3.
62

3.
76

Figure 8.14  Histogram and descriptive statistics for viscosity example.
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 suppliers. From the Anderson-Darling normality test, it can be 
seen that none of the three data sets follow a normal distribution 
because the p-values for them are below 0.05, which was the alpha 
level (α) selected by the company. Since the data do not follow the 
normal distribution, we will use the median instead of the mean 
as the measure of central tendency, as mentioned in Section 4.5. It 
can be seen that the median for supplier A is 3.30 cP, for supplier 
B, 2.98 cP, and for supplier C, 2.66 cP. 

In order to analyze the medians, a Kruskal-Wallis test will be 
performed. The null hypothesis is that the medians are not signifi-
cantly different, while the alternate hypothesis is that at least one 
median is different. Figure 8.15 shows the results of the Kruskal-
Wallis test. A p-value of 0.0000 was obtained. A p-value lower 
than 0.05 for this test indicates that the medians of each of these 
populations are statistically different. The obtained value indi-
cates that the difference in the medians (3.30 cP for supplier A, 
2.98 cP for supplier B, and 2.66 cP for supplier C) is due to some 
special cause(s). Such differences in the medians are not the result 
of natural process variability.

Since supplier B has a median of 2.98 cP, which is closest to 
the target value of 3.00 cP, that supplier must be selected. It can 
also be noted that the data from supplier B have the smallest stan-
dard deviation among the three suppliers, as can be seen in  Figure 
8.14. However, the equality of variances when the data are not 
 normal will be discussed in Section 8.4.3 about the Levene test.

Kruskal-Wallis nonparametric ANOVA: viscosity

Test information
H0: Median 1 = Median 2 = . . . = Median k
Ha: At least one pair Median i ≠ Median j

Supplier A B C
Count (N) 30 20 27
Median 3.30 2.98 2.66

p-value (2-sided, adjusted for ties) 0.0000

Figure 8.15  Kruskal-Wallis test for viscosity example.



96  Chapter Eight

8.4 COmparing varianCes

Sections 8.2 and 8.3 were about the comparison of means and medians, 
respectively. Those are measures of central tendency, as discussed in 
 Section 4.4. However, as discussed in Section 7.3 about process capability, 
sometimes our issues are not about process centering but about process dis-
persion. One of the measures of dispersion discussed in Section 4.4 was the 
variance. In this section we will discuss three hypothesis tests for compar-
ing variances: the F-test, the Bartlett test, and the Levene test. The first two 
tests will be used when the data follow the normal distribution, whereas the 
last test will be used for nonnormal data.

8.4.1 F-Test

The F-test is used whenever we want to compare the variances between two 
groups. The underlying assumption is that the data follow a normal distri-
bution. As mentioned in Section 8.2.3, this test has to be performed prior to 
a one-way ANOVA because, in order to perform such a test, the variances 
must be equal. Let us illustrate the use of the F-test with an example:

A company wants to analyze two different adhesives for the 
 transdermal patches they manufacture. Adhesives on a patch 
 generally help maintain contact between the transdermal sys-
tem and skin surface. The adhesiveness of the patches is critical 
in the drug delivery mechanism, its safety, product quality, and   
efficacy. As such, a good adhesive should easily adhere to the skin 
with an applied finger pressure and be tacky enough to maintain  
a strong holding force. The adhesive should also be easily removed 
from the skin without leaving a residue. The specification for  
the adhesiveness of the transdermal patch ranges from 300 to  
3500 g/system. The box plots for the transdermal patches using 
each adhesive are presented in Figure 8.16.

It can be seen that, although the averages seem to be similar, 
the variation in adhesiveness of adhesive A is smaller than that of 
adhesive B. In order to analyze the variances of these two groups, 
an F-test will be peformed using statistical software. The results of 
the F-test are summarized in Figure 8.17.

As can be seen in Figure 8.17, the null hypothesis is that 
the variances are not significantly different, while the alternate 
hypothesis is that they are different. Since the p-value is lower 
than 0.05, we reject the null hypothesis and conclude there are sig-
nificant differences in the variances. Adhesive A has a standard 
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deviation of 102.6 g/system, while adhesive B has a standard devi-
ation of 335.6 g/system. Since the averages for both adhesives are 
about the same (1179.2 for adhesive A and 1136.0 for adhesive B), 
the adhesive with the lower variation must be selected. In this case, 
adhesive A must be the chosen one.

At this point, we might ask the question of whether the F-test 
was the appropriate one for these data since we did not perform 
a normality test prior to performing this test. However, as can be 

Figure 8.16  Box plots for transdermal patch adhesiveness example.
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F-test for equal variance: adhesiveness
(Use with normal data)

Test information
H0: Variance 1 = Variance 2
Ha: Variance 1 ≠ Variance 2

Adhesive type A B
Count 100 125
Mean 1179.2 1136.0
StDev 102.62 335.57
AD normality test p-value 0.1975 0.7584

p-value 0.0000

Figure 8.17  F-test for transdermal patch adhesiveness example.



98  Chapter Eight

seen in Figure 8.17, an Anderson-Darling normality test was per-
formed as part of the analysis. The p-values for the normality test 
are higher than 0.05; thus, we can not reject the null hypothesis 
that the data follow a normal distribution. If any of those p- values 
were lower than 0.05, we could not have chosen the F-test (or 
Bartlett test, for three or more variances). In such case, a Levene 
test would be the appropriate one.

8.4.2 Bartlett Test

The Bartlett test is used whenever we want to compare the variances 
between two or more groups. The underlying assumption is that the data 
follow a normal distribution. As mentioned in Section 8.2.3, this test has to 
be performed prior to a one-way ANOVA because, in order to perform such 
a test, the variances must be equal. Let us illustrate the use of the Bartlett 
test with an example:

Let us suppose that in the previous example the manufacturer 
would like to test a third adhesive. Since the F-test can only com-
pare two variances at a time, we need to perform a Bartlett test. 
Figure 8.18 shows the results for the adhesiveness tests.

It can be seen that, although the averages seem to be similar, 
the variation in adhesiveness of adhesive A is smaller than that  

Figure 8.18  Box plots for transdermal patch adhesiveness example.
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of adhesive B and adhesive C. In order to analyze the variances of 
these three groups, a Bartlett test will be peformed using statisti-
cal software. The results of the Bartlett test are summarized in 
Figure 8.19.

As can be seen in Figure 8.19, the null hypothesis is that 
the variances are not significantly different, while the alternate 
hypothesis is that at least one of the variances is different. Since the 
p-value is lower than 0.05, we reject the null hypothesis and con-
clude there are significant differences in the variances.  Adhesive 
A has a standard deviation of 102.6 g/system, adhesive B has a 
standard deviation of 335.6 g/system, and adhesive C has a vari-
ance of 380.6 g/system. Since the averages for the three adhesives 
are about the same (1179.2 for adhesive A, 1136.0 for  adhesive B, 
and 1057.2 for adhesive C), the adhesive with the lower variation 
must be selected. As in the example where the F-test was used, 
adhesive A must be the chosen one.

Another graph will be developed for this analysis: the histo-
gram and descriptive statistics. The results for each of the three 
adhesives are presented in Figure 8.20.

The Anderson-Darling normality test shows that the normal-
ity hypothesis can not be rejected for any adhesive type. Further-
more, a look at the minimum values shows that adhesive C will not 
be complying with the lower specification limit of 300 g/system 
because there are values below that specification limit.

Bartlett test for equal variance: adhesiveness
(Use with normal data)

Test information
H0: Variance 1 = Variance 2 = . . . = Variance k
Ha: At least one pair Variance i ≠ Variance j

Adhesive type A B C
Count 100 125 200
Mean 1179.2 1136.0 1057.2
StDev 102.62 335.57 380.64
AD normality test p-value 0.1975 0.7584 0.2818

p-value 0.0000

Figure 8.19  Bartlett test for transdermal patch adhesiveness example.
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Adhesiveness—Adhesive type C

Adhesiveness—Adhesive type C

Count = 200
Mean = 1057.2
Stdev = 380.64
Range = 2032.76

Minimum = 36.458
25th percentile (Q1) = 804.88
50th percentile (median) = 1070.1
75th percentile (Q3) = 1330.6
Maximum = 2069.22192

95% CI mean = 1004.14 to 1110.29
95% CI sigma = 346.63 to 422.10

Anderson-Darling normality test:
A-squared = 0.444532
p-value = 0.2818
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Adhesiveness—Adhesive type B

Adhesiveness—Adhesive type B

Count = 125
Mean = 1136.0
Stdev = 335.57
Range = 1648.18

Minimum = 404.40
25th percentile (Q1) = 894.03
50th percentile (median) = 1155.6
75th percentile (Q3) = 1351.0
Maximum = 2052.57371

95% CI mean = 1076.56 to 1195.38
95% CI sigma = 298.50 to 383.24

Anderson-Darling normality test:
A-squared = 0.244274
p-value = 0.7584

Adhesiveness—Adhesive type A

Adhesiveness—Adhesive type A

Count = 100
Mean = 1179.2
Stdev = 102.62
Range = 494.79

Minimum = 923.56
25th percentile (Q1) = 1100.0
50th percentile (median) = 1191.0
75th percentile (Q3) = 1253.3
Maximum = 1418.35089

95% CI mean = 1158.82 to 1199.54
95% CI sigma = 90.10 to 119.21

Anderson-Darling normality test:
A-squared = 0.505843
p-value = 0.1975

Figure 8.20  Histogram and descriptive statistics for transdermal patch
  adhesiveness example.
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8.4.3 Levene Test

The F-test and Bartlett test are used when the data follow a normal distri-
bution. When the data do not follow a normal distribution, we can perform 
the Levene test. As opposed to the F-test and Bartlett test, the Levene test 
applies for the comparison of two or more variances. Let us illustrate the 
use of the Levene test through an example:

A pharmaceutical company wants to evaluate the time it takes 
their analysts to perform a certain laboratory test. They have 
noticed too much variation in the time it takes the various shifts 
to complete the test and would like to investigate the reason for 
the variation. In order to start the analysis, the time it took each 
 analyst to perform the laboratory test (in hours) is collected. Then, 
the data are segregated by shift. The box plots for the three shifts  
are presented in Figure 8.21.

It can be seen that although shift 2 takes a longer time to com-
plete the test, the analysts in that shift are more consistent; in other 
words, their variability is much less than the variability of shift 
1 and shift 3. Furthermore, there are three outliers that obtained 
shorter times than the rest of shift 2. Figure 8.22 shows the 
Anderson- Darling normality test results in terms of their p- values: 
0.0021 for shift 1, 0.0000 for shift 2, and 0.0190 for shift 3. Based 

Figure 8.21  Box plots for laboratory test evaluation example.
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on these results, we can conclude that none of the data sets  follow 
the normal distribution. So, as mentioned earlier, we can not  
use the F-test or Bartlett test to analyze the variances. Instead, we 
need to use the Levene test to compare the variances. Figure 8.22 
shows the variances for the three shifts: 1.304 hours for shift 1, 
0.618 hours for shift 2, and 1.092 hours for shift 3. 

In the Levene test, the null hypothesis is that there is not a 
significant difference in the variances, and the alternate hypoth-
esis is that at least one variance is significantly different. Taking a 
look at the p-value for that test (0.0000), we can conclude that at 
least one variance is significantly different. Analyzing the results, 
it is evident that the variation in shift 2 is much lower than the 
variation in shift 1 and shift 3. So, the company will need to iden-
tify the causes of the smaller variation in that shift as compared  
with the other two shifts.

8.5 summary

Whenever we want to make improvement in our processes, some of the 
most useful tests for analyzing different alternatives are the hypothesis 
tests. Using this tool, several groups can be compared in terms of averages, 
medians, variances, and so on. In a hypothesis test, we want to determine 
whether the observed difference between groups is due to the random varia-
tion of the process or if that difference is caused by a change in the process. 

Levene test for equal variance: evaluation time
(Use with nonnormal data)

Test information
H0: Variance 1 = Variance 2 = . . . = Variance k
Ha: At least one pair Variance i ≠ Variance j

Shift 1 2 3
Count 31 42 27
Mean 3.41 4.52 3.82
Median 3.50 4.75 4.18
StDev 1.304 0.618 1.092
AD normality test p-value 0.0021 0.0000 0.0190

p-value 0.0000

Figure 8.22  Levene test for laboratory test evaluation example.
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Prior to performing a hypothesis test, we need to address the normality of 
the data: if data follow a normal distribution, the tests to be performed are 
called parametric tests; if data do not follow a normal distribution, the tests 
are called nonparametric tests. The parametric tests for central tendency 
use the average, while the nonparametric tests for central tendency use the 
median. When comparing central tendency, we need to select the test based 
on the number of groups we want to compare: a group against a standard, 
a group against another group, or more than two groups. The results of the 
hypothesis tests will be used in subsequent analyses.



105

9
Regression Analysis

9.1 OveRview

Regression analysis is a statistical technique for estimating the relationships 
between variables. The focus is on the relationship between a dependent 
variable (also known as output or y) and one or more independent vari-
ables (also known as input or x). Specifically, regression analysis helps us to 
understand how the typical value of the dependent variable changes when 
any one of the independent variables is changed while the other indepen-
dent variables are held fixed. A scatter plot shows the correlation between 
two variables in a process. Dots representing data points are scattered  
on the diagram. The extent to which the dots cluster together in a line across 
the diagram shows the strength with which the two factors are related.  
If the variables are correlated, when one changes, the other probably also 
changes. Dots that look like they are trying to form a line are strongly cor-
related. Figure 9.1 shows the different types of linear correlation than can 
be observed in a process.

Regression analysis is widely used for prediction and forecasting. It is 
also used to understand which of the independent variables are related to 
the dependent variable, and to explore the forms of these relationships. In 
some cases, regression analysis can be used to infer causal relationships 
between the independent and dependent variables. However, this can lead 
to false relationships, so caution is advisable. In other words, correlation 
does not imply causation. For example, although a scatter plot could show a 
positive correlation between the amount of rain and the amount of wealth, 
there is no causation between those two variables.
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9.2 LeAst squARes MethOd

The regression equation is determined by a procedure that minimizes the 
total squared distance of all points to the regression line. This procedure is 
called the least squares method. It finds the line where the squared verti-
cal distance from each data point to the regression line (called residuals) 
is as small as possible. Regression uses the least squares method to deter-
mine the “best fitting line.” In other words, the principle of least squares is 
“Choose, as the best fitting line, the line that minimizes the sum of squares 
of the deviations of the observed values of Y from those predicted.” Figure 
9.2 shows the concept behind the least squares method.

Figure 9.1 Types of correlation.
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Figure 9.2 The least squares method.
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9.3 RegRessiOn MetRics

Once the “best” regression line is obtained, we need to analyze some 
 metrics to determine how appropriate the regression model is. Two of  
the metrics that will be discussed are the correlation coefficient and the 
determination coefficient.

The correlation coefficient (r) is a number that ranges from –1 to +1. 
This metric provides two important aspects of the regression model: mag-
nitude and slope direction. For instance, when the correlation coefficient is 
equal to –1, all the data points fall in a straight, decreasing line. This is also 
called a “perfect negative correlation.” When the correlation coefficient is 
equal to +1, all the data points fall in a straight, increasing line. This is also 
called a “perfect positive correlation.” Figure 9.3 illustrates this concept.

When the data points begin to scatter away from the straight line, the 
correlation coefficient starts to move away from –1 or +1. That is, they 
move from those extreme values to zero. A correlation coefficient of zero 
means that there is no linear correlation. In summary, the closer the value 
to either –1 or +1, the stronger the correlation; the closer to zero, the weaker 
the correlation. Figure 9.4 shows this concept.

The other metric is called the determination coefficient. It is often 
referred to as r2 or R2. It is basically the square of the correlation coeffi-
cient. Based on the values mentioned regarding the correlation coefficient 
(range from –1 to +1), the range of values for the determination coefficient 
goes from zero to +1 (or from 0% to 100%, when expressed as a percent-
age). But what specific information provides the determination coefficient? 
This value represents the percentage of the model defined by the regression 
equation. That is, if the correlation coefficient is either –1 or +1, then the 
determination coefficient will be +1 (or 100%). That would represent a per-
fect correlation. In other words, the regression line would represent 100% 

Figure 9.3 Perfect correlation.
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of the model. Said differently, the independent variable would account for 
all the variation in the model.

However, when the correlation coefficient starts to move away from 
either –1 or +1, there are other independent variables that could be caus-
ing the variation. For instance, if the correlation coefficient is –0.8 or +0.8, 
the determination coefficient will be 0.64, or 64%, which means that the 
regression line only accounts for 64% of the model. In other words, there 
is 36% of the variation not explained by the regression equation. In such a 
case, an approach would be to identify other potential variables that could 
be affecting the model and include them in a multiple regression model. So, 
what is an “appropriate” value for the determination coefficient? There is 
not any specific agreement; however, most references establish that an R2 
greater than 0.80, or 80%, is considered acceptable.

9.4 ResiduALs AnALysis

Once we have determined the best regression line equation and calculated 
the correlation and determination coefficient, there is another task we need 
to perform in order to make certain that the calculated regression line equa-
tion is statistically valid. This is one task that is rarely performed but is 

Figure 9.4 Strong and weak correlation.
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of paramount importance. It is called residuals analysis. As mentioned in 
 Section 9.2, the residuals are the vertical distance from each data point to the 
regression line. Said differently, the residuals are the difference between the 
expected value and the observed value. The expected value is the value that 
is represented by the regression line, while the observed value is the actual 
value observed in the process. In order for the regression analysis to be sta-
tistically valid, the residuals must comply with the following assumptions:

•	 Residuals	must	be	normally	distributed.

•	 Residuals	must	be	in	statistical	control.

•	 The	average	of	the	residuals	must	be	zero.

•	 The	variation	of	the	residuals	must	remain	constant.

There are many graphical tools that can be used to analyze these assump-
tions. Most statistical software has menus to analyze the residuals. How-
ever, those graphs can be prepared individually. For instance, to analyze 
the assumption of normality, we could use a histogram and descriptive sta-
tistics, as presented in Section 5.2. Also, in order to verify the assumptions 
of statistical control, average of zero, and constant variation, a variables 
control chart (as will be explained in Section 11.2) can be used. Figure 9.5 
shows the histogram and descriptive statistics for the residuals analysis of 
a certain process. By looking at both the shape of the histogram and at the 
p-value for the Anderson-Darling normality test (0.8869), it can be seen 
that the normality assumption for residuals is achieved.

In order to verify the other three assumptions, an individuals control 
chart of the residuals is developed. It can be seen in Figure 9.6 that all 
data points (residuals) are within the control limits; that is, residuals are in 

Residuals

Residuals

Count = 100
Mean = –4.827E-15
Stdev = 0.820557
Range = 4.07

Minimum = 1.767
25th percentile (Q1) = –0.509577
50th percentile (median) = –0.0501819
75th percentile (Q3) = 0.570971
Maximum = 2.30278772

95% CI mean = –0.16 to 0.16
95% CI sigma = 0.72 to 0.95

Anderson-Darling normality test:
A-squared = 0.196609
p-value = 0.8869
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Figure 9.5 Histogram and descriptive statistics for residuals analysis.
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 statistical control. It can also be noted that the average of the residuals (the 
centerline of the graph) is zero. The control chart also shows that varia-
tion has remained constant over time (that is, it does not show a pattern of 
increasing or decreasing over time).

Now that we know the basics of regression analysis, let us explore two 
types of regression analysis: simple linear regression and multiple linear 
regression.

9.5 siMpLe LineAR RegRessiOn

In simple linear regression, we analyze the relationship between one inde-
pendent variable and one dependent variable. The equation for the simple 
linear regression model is:

y = β0 + β1x + ε

where y is the dependent variable, x is the independent variable, β0 is the 
y-intercept, and β1 is the slope. There is also an error term, defined by ε. Let 
us explain the concept with an example:

A medical device company manufactures dental floss. Their  
customer satisfaction department wants to analyze which are 
the variables that have the most significant impact on customer  
satisfaction. So, after a customer complaint was received at their 
call center and finally resolved, certain information was requested 
from the complainant. The information collected included  distance 
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of  complainant from call center, ease of communications, and 
responsiveness to call. To simplify the analysis, the customer sat-
isfaction department began by analyzing only one variable: ease of 
communications. In order to analyze this variable, a scale from 1 
to 5 was developed, with 1 meaning very difficult to communicate 
and 5 meaning very easy to communicate. Also, a customer satis-
faction index was developed using the same scale, with a 1 mean-
ing very unsatisfied and 5 meaning very satisfied. Ratings for each 
day were collected and averaged. Figure 9.7 shows the scatter plot 
for the past 100 days.

It can be seen that as ease of communications increases, the 
customer satisfaction index also increases; that is, there is a posi-
tive relationship between ease of communications and customer 
satisfaction index. Although there seems to be a positive relation-
ship between these two variables, it does not seem to be too strong 
because the data points are too scattered around the regression 
line. So, a regression analysis was performed using statistical soft-
ware. Figure 9.8 shows the results of this regression analysis.

The regression equation calculated by the analysis was

Customer satisfaction index =  
(1.403) + (0.639981) × Ease of communications
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Figure 9.7 Scatter plot for ease of communications versus customer 
 satisfaction index.
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The slope (0.639981) demonstrates there is a positive relationship 
between ease of communications and customer satisfaction index. 
However, is that a strong relationship or a weak relationship? Tak-
ing a look at the R2 (R-squared) value, it is 55.56%, or 0.5556. 
Taking the square root of that value gives us the value of the cor-
relation coefficient, which is 0.745. Not a bad value. It seems there 
is a moderate relationship between ease of communications and 
customer satisfaction index. However, returning to the R2 value, it 
is only 55.56%. What does that mean? 

Recall from Section 9.3 that an R2 value greater than 80% 
is considered acceptable. In this example, the obtained R2 value 
means that only 55.56% of the regression model is explained by 
the simple linear regression equation; that is, there is another 
44.44% of the model that is explained by some factors not consid-
ered in our regression model. So, let us turn our attention to mul-
tiple linear regression.

9.6 MuLtipLe LineAR RegRessiOn

As mentioned in Section 9.3, whenever the simple linear regression model 
provides a low value for the determination coefficient (for example, R2 < 
80%), that means there are other variables not considered that are affecting 
the model. In such a case, we would need to identify which other variables 
could be affecting the model. The multiple linear regression model can be 
explained by the following formula:

y = β0 + β1x1 + β2x2 + β3x3 + … + βnxn + ε

Simple regression model: Customer satisfaction index = (1.403) +
(0.639981) × Ease of communications

Model summary:
R-squared 55.56%

Parameter estimates:
Predictor term Coefficient SE coefficient T P
Constant 1.403 0.222942 6.291 0.0000
Ease of communications 0.639981 0.057813498 11.070 0.0000

Figure 9.8 Regression analysis for ease of communications versus customer 
 satisfaction index.
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where y is the dependent variable, the x’s (x1, x2, x3, and so on) are the inde-
pendent variables, β0 is the y-intercept, and the other β’s (β1, β2, β3, and so 
on) are the slopes for each of the independent variables. There is also an 
error term, defined by ε. Let us explain the concept with an example:

Since the medical device manufacturer in the previous example 
realized that other variables not considered in the simple regres-
sion model might be affecting the analysis, they decided to include 
other factors, such as distance from call center (expressed in 
miles), number of complaints received during the day, and respon-
siveness to calls. For the last one (responsiveness to calls) the same 
scale from 1 to 5 was used, 1 meaning poor responsiveness and 5 
meaning excellent responsiveness. The results of the multiple lin-
ear regression analysis are presented in Figure 9.9.

It can be noted that the R2 value has increased from 55.56% to 
90.10%. Now 90.10% of the model is explained by the following 
multiple regression equation:

Customer satisfaction index =  
(0.408903) + (0.000293) × Distance from call center +  

(0.001892) × Number of complaints received +  
(0.433466) × Responsiveness to calls +  
(0.430775) × Ease of communications

Multiple regression model: Customer satisfaction index = (0.408903) 
+ (0.000293) × Distance from call center + (0.001892) × Number 
of complaints received + (0.433466) × Responsiveness to calls + 
(0.430775) × Ease of communications

Model summary:
R-squared 90.10%

Parameter estimates:
Predictor term Coefficient SE coefficient T P
Constant 0.408903 0.232912 1.756 0.0824
Distance from call center 0.000293 0.002507031 0.116701 0.9073
Number of complaints received 0.001892 0.004489271 0.421513 0.6743
Responsiveness to calls 0.433466 0.02450545 17.689 0.0000
Ease of communications 0.430775 0.030548301 14.101 0.0000

Figure 9.9 Four-factor multiple regression analysis for customer satisfaction 
 index.



114  Chapter Nine

But are all the factors significant for the regression equation? In 
Appendix D, the hypothesis test for regression analysis is pre-
sented. The null and alternate hypotheses are:

H0: Data are not correlated

Ha: Data are correlated

Appendix D shows that when the obtained p-value is lower than 
an alpha value (α), the null hypothesis will be rejected and the 
alternate hypothesis will be accepted. So, in order to conclude that 
the input variable (x) is related to the output variable (y), we must 
obtain a p-value lower than the alpha value (α). Considering that 
α = 0.05, all the input variables with a p-value lower than 0.05 will 
be considered significant; that is, those input variables are related 
to the output variables.

Taking another look at Figure 9.9, we can see that only Respon-
siveness to calls and Ease of communications have p- values lower 
than 0.05. We can conclude that those two input variables are 
related to the output variable, Customer satisfaction index. So, we 
will rule out the other two variables and run the analysis again. 
Figure 9.10 shows the results.

It can be seen that the R2 value has only decreased from 
90.10% to 90.08%. Now 90.08% of the model is explained by the 
following multiple regression equation:

Customer satisfaction index =  
(0.493463) + (0.435673) × Responsiveness to calls +  

(0.433346) × Ease of communications

Multiple regression model: Customer satisfaction index = 0.493463 
+ (0.435673) × Responsiveness to calls + (0.433346) × Ease of
communications

Model summary:
R-squared 90.08%

Parameter estimates:
Predictor term Coefficient SE coefficient T P
Constant 0.493463 0.116857 4.223 0.0001
Responsiveness to calls 0.435673 0.023710993 18.374 0.0000
Ease of communications 0.433346 0.029667131 14.607 0.0000

Figure 9.10  Two-factor multiple regression alanysis for customer satisfaction
  index.
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This regression equation can be used to predict the value of the customer 
satisfaction index based on the values of Responsiveness to calls and Ease 
of communications.

9.7 suMMARy

The regression analysis provides useful information for the design of exper-
iments, which will be explained in the next chapter. Regression can assist 
in the determination of which input variables have an impact on the out-
put variables. It may also establish the kind of relationship between the  
input variables and output variables (positive correlation or negative corre-
lation), and the magnitude of that relationship (strong or weak). The only 
drawback to regression is that it is done with already collected data. In that 
sense, there could be some uncontrollable factors affecting the results. For 
this reason, the design of experiments will be presented as a systematic tool 
for identifying the sources of process variability.
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10
Design of Experiments

10.1 OvErviEw

In industry, designed experiments can be used to systematically investi-
gate the process or product variables that influence product quality. After 
you identify the process conditions and product components that influence 
product quality, you can direct improvement efforts to enhance a prod-
uct’s manufacturability, reliability, quality, and field performance. Because 
resources are limited, it is very important to get the most information from 
each experiment you perform. Well-designed experiments can produce sig-
nificantly more information and often require fewer runs than haphazard or 
unplanned experiments. In addition, a well-designed experiment will ensure 
that you can evaluate the effects that you have identified as important.

The classical approach of changing one variable at a time has 
shortcomings:

•	 Too	many	experiments	are	necessary	to	study	the	effects	of	all	 
the input factors. 

•	 The	optimum	combination	of	all	the	variables	may	never	be	
revealed. 

•	 The	interaction	between	factors	(the	behavior	of	one	factor	being	
dependent on the level of another factor) can not be determined

Classical	 experiments	 focus	 on	 OFAT	 (one	 factor	 at	 a	 time)	 at	 two	 or	
three	 levels	 and	 try	 to	 hold	 everything	 else	 constant	 (“blocked”),	 which	
is  impossible to do in a complicated process. When a statistical designed 
experiment	 is	 properly	 constructed,	 it	 can	 focus	 on	 a	 wide	 range	 of	 key	
input factors or variables and will determine the optimum levels of each  
of the factors. Some of the benefits of statistical design of experiments 
(DOE)	are:
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•	 Many	factors	can	be	evaluated	simultaneously.

•	 One	can	look	at	a	process	with	relatively	few	experiments.

•	 If	some	(noise)	factors	can	not	be	controlled,	other	input	factors	 
can be controlled.

•	 In-depth,	statistical	knowledge	is	not	necessary	to	get	a	big	benefit.

•	 Quality	can	be	improved	without	cost	increase.	

•	 In	many	cases,	tremendous	cost	savings	can	be	achieved.

Factorial designs allow for the simultaneous study of the effects that several 
factors may have on a process. When performing an experiment, varying 
the levels of the factors simultaneously rather than one at a time is efficient 
in terms of time and cost, and allows for the study of interactions between 
factors. Interactions are the driving force in many processes. Without the 
use of factorial experiments, important interactions may remain undetected.

10.2 DEsign Of ExpErimEnts 
tErminOlOgy

When	dealing	with	DOE,	some	specific	words	come	into	play.	Table	10.1	
shows	some	of	the	most-used	words	in	DOE,	along	with	their	counterparts	
in our day-to-day conversations about statistical tools.

So,	a	DOE	can	be	defined	as	a	systematic	way	to	treat	the	factors	at	
 certain levels in order to evaluate the effect on the response variable. Or, 
in layman’s terminology, to test the different combinations of inputs and 
 settings in order to evaluate the result on the output variable.

In	DOE	there	is	a	term	called	“noise.”	It	refers	specifically	to	an	input	
that can not be controlled or is too difficult or costly to control. Some 

Table 10.1 Design of experiments terminology.

 Common term Design of experiments term

 Input (x) Factor

 Output (y) Response

 Setting Level

 Result Effect

 Uncontrollable input Noise

 Combination of inputs and settings Treatment, run
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 examples might be humidity, raw material quality, operators, and so on. 
As will be explained later, in a full factorial experiment, all the factors are 
tested at all the levels. Traditionally, we select two levels for each factor 
(usually	called	“low”	level	and	“high”	level).	This	means	that	we	need	to	
specify certain settings that we can control. However, what do we do when 
we have a factor that can not be controlled or is too difficult or costly to con-
trol? There are many approaches to deal with this. However, one of the most 
commonly	used	approaches	is	“blocking.”	It	essentially	means	to	break	our	
experiment	into	certain	stages	(called	blocks) and run the same treatments 
on	each	block.	Instead	of	adding	another	factor,	we	analyze	the	results	on	
each	of	these	blocks	and	determine	if	the	block	is	significant	or	not.	Block-
ing will be discussed in detail in Section 10.5.

10.3 full factOrial  
ExpErimEnts

As mentioned in Section 10.2, a full factorial experiment is one in which 
we evaluate all the possible combinations of factors and levels. That is, we 
run	all	the	factors	(inputs)	at	all	levels	(settings).	The	most	common	facto-
rial experiment is called the 2k, where 2 is the number of levels and k is the 
number of factors. In this type of experiment, if we have two factors, we 
will have four combinations; for three factors, we will have eight combina-
tions; for four factors, we will have 16 combinations; and so on. The levels 
are	usually	identified	as	“low”	and	“high.”	These	levels	must	be	selected	
such that they are not too close together or too far apart. Too close is not 
good because we might not see a change in the response variable when one 
does exist; too far is not good because we might be experiencing unwanted 
nonlinear relationships. 

But why do we not try with three or more levels to learn more about 
the	process?	For	 instance,	set	 the	 levels	 to	“low,”	“medium,”	and	“high.”	
In	 DOE,	 it	 is	 more	 desirable	 to	 run	 many	 small	 experiments	 than	 run	
too few big experiments. Table 10.2 shows the relationship between the  
number of factors and levels, and their impact on the number of runs for 
the experiment.

It can be seen in Table 10.2 that for each additional factor in a 2k exper-
iment, the number of combinations doubles; however, for each additional 
factor in a 3k experiment, the number of combinations triples. Let us ana-
lyze the scenario where there are four factors. A 2k experiment with four 
factors will require 16 experiments; however, a 3k experiment with four fac-
tors will require 81 experiments. In theory, we could perform five of the 2k 
experiments	(80	runs)	with	fewer	resources	than	a	single	3k	experiment	(81	
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runs).	So,	which	one	do	you	think	will	provide	the	most	information	with	
the fewest number of experiments? The 2k, of course.

10.4 fractiOnal factOrial 
ExpErimEnts

As mentioned earlier, in a full factorial experiment, we test all the pos-
sible combinations of levels and factors. It was also mentioned that as the   
number of factors increases, the number of experiments rises dramatically. 
So, what alternative do we have when the number of factors in an experi-
ment	is	high	(let’s	say,	more	than	five	factors)?	In	this	case,	we	can	perform	
what is called a fractional factorial experiment.

In contrast to a full factorial experiment, a fractional factorial experi-
ment minimizes the number of runs. However, we can not fractionalize the 
experiment into any arbitrary number of runs. Since in a 2k full factorial 
experiment the number of runs doubles with each additional factor, a simi-
lar approach will be followed for the fractional factorial. However, in this 
case, the number of runs will be half for each additional degree of fraction-
alization. For example, a five-level full factorial experiment will require 
32 runs. However, we could run a half fractional factorial experiment with 
16 runs, or a quarter fractional factorial experiment with eight runs, or an 
eighth fractional factorial experiment with four runs. 

It is very important to realize that the degree of fractionalization can 
not be set arbitrarily. This is because it would be very tempting to run 
all fractional factorial experiments with the fewest number of runs pos-
sible	(let’s	say,	four	runs).	In	fractional	factorials	there	is	something	called	 
the resolution. Technically, the resolution is a measure of the accuracy  
of the information provided by the experiment. The higher the resolution, 
the more accurate the information provided. The lower the resolution, the 

Table 10.2 Relationship between number of levels and factors.

 Number of levels Number of factors Number of runs

 2 2 4

 2 3 8

 2 4 16

 3 2 9

 3 3 27

 3 4 81
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less  accurate the information provided. That is, as resolution decreases, 
the	amount	of	“confounded”	effects	increases.	Confounding	occurs	when	 
some	factors	(main	factors	or	interaction	factors)	are	literally	aliased	with	
other	factors	(interaction	factors)	so	that	the	number	of	runs	can	be	mini-
mized and we are able to calculate the effects of the main factors. Table 
10.3 shows the various resolutions for different degrees of fractionalization.

Let’s say that our experiment has six factors at two levels. A full facto-
rial experiment will require a total of 64 runs. However, we could perform 
a	half	fractional	factorial	experiment	with	32	runs	(resolution	VI),	a	quar-
ter	fractional	factorial	experiment	with	16	runs	(resolution	IV),	or	an	eighth	
fractional	factorial	experiment	with	eight	runs	(resolution	III).	As	can	be	
seen in Table 10.3, a full factorial and a half fractional factorial experiment 
are good options because they are highlighted as green zone (resolution	V	
and above). The quarter fractional factorial experiment is highlighted in 
yellow zone (resolution	IV),	so	caution	should	be	exercised	because	there	
might be some confounded effects. Finally, the eighth fractional factorial 
experiment is highlighted in red zone (resolution	III),	so	 it	 is	not	recom-
mended to use this degree of fractionalization because there are too many 
confounded effects and the results might hide some important information.

10.5 BlOcking

In	the	ideal	DOE,	all	factors	included	in	the	experiments	will	be	controlled.	
That	is,	all	factors	can	be	set	to	determined	levels	(settings).	However,	there	

Table 10.3 Degree of fractionalization versus resolution.

 Number Number of factors

 of runs 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 4 Full III

 8  Full IV III III III

 16   Full V IV IV IV III III III III III III III

 32    Full VI IV IV IV IV IV IV IV IV IV

 64     Full VII V IV IV IV IV IV IV IV

 128      Full VIII VI V V IV IV IV IV

Legend:
Red zone—Resolution III
Yellow zone—Resolution IV
Green zone—Resolution V and above
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are certain occasions when a factor can not be controlled or it could be too 
costly to control. For example, we would probably not be able to control the 
humidity level in a warehouse, or the variability in a supplied raw material, 
or the consistency among operators.

In each of these situations, we could try to include the variable as a 
 factor in the experiment. However, how could you guarantee that ware-
house humidity is exactly the same throughout the day? Or, how can you be 
certain that an operator has the same consistency throughout the day? These 
are only some examples of noncontrollable factors. So, how do we deal with 
those factors that can not be completely controlled or are too costly to con-
trol?	An	alternative	would	be	to	add	“blocks”	to	our	experiment.

A block is technically a set of conditions that will be replicated at cer-
tain times. Instead of adding a factor and analyzing that factor, we are going 
to	add	a	block	and	determine	if	the	block	is	significant	or	not.	If	the	block	
is not significant, there aren’t any major problems. This means that running 
our	experiment	with	any	of	those	conditions	(let’s	say,	humidity	levels,	sup-
plied raw material, specific operator, and so on) will not have a significant 
impact	on	the	response	variable.	However,	if	the	block	becomes	significant,	
we	need	to	determine	how	that	factor	(the	block)	will	either	be	controlled	
or	set	to	a	fixed	value.	The	first	option	(controlling	the		factor)	might	be	the	
most	 difficult	 to	 achieve.	 So,	 sometimes	 when	 a	 block	 becomes	 signifi-
cant, the best approach is to determine which of the levels provides the best 
results.	Let’s	look	at	an	example:

During	 an	 experiment	 to	 determine	 the	 hardness	 of	 a	 tablet,	 a	
quality engineer found that raw material was an important factor 
to consider. The company is currently receiving that raw material 
from two different suppliers: supplier A and supplier B. Previous 
experience has shown that raw material is a noncontrollable factor 
(that	is,	raw	material	is	considered	a	noise	factor).	Thus,	it	can	not	
be included as a factor in the experiment because we are not able 
to	control	the	levels	(settings)	of	that	factor.	So,	we	will	include	the	
raw	material	as	a	block	in	our	experiment.	The	other	two	impor-
tant factors are speed and compression force. A two-level factorial 
experiment with two factors was generated. Table 10.4 shows the 
eight runs, along with the hardness result for each run. Notice the 
two	blocks	that	were	developed	in	this	experiment:	block	1	repre-
sents	the	raw	material	for	supplier	A,	and	block	2	represents	the	
raw material for supplier B.

Figure 10.1 shows the results when the experiment was ana-
lyzed	using	statistical	software.	It	can	be	seen	that	the	block	is	not	
significant because it has a high p-value	(0.638).	More	on	this	will	
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be presented in section 10.8. From this experiment, we can con-
clude	that	raw	material	(that	is,	which	supplier	to	use)	does	not	have	
an impact on the tablet hardness. But, what if the p-value was very 
small	(let’s	say,	lower	than	0.05)?	In	that	case,	raw	material	would	
be considered an important factor because, based on which supplier 
we do use, the tablet hardness would be different. Should we include 
this  factor in our experiment? It depends. Remember that the lev-
els in the experiment must be controllable. In the current situation,  
if raw material is not controllable, my opinion would be to use only  
raw material from the supplier that provides the best quality.

10.6 rEpEtitiOn anD rEplicatiOn

Very	often	when	we	are	designing	an	experiment,	we	hear	the	words	repeti-
tion and replication.	They	might	seem	like	they	are	the	same	thing;	how-
ever,	each	of	these	terms	represents	something	different.	Most	people	tend	

Table 10.4 Data table for blocking experiment.

  A: Machine B: Compression 
 Blocks speed force Hardness

 1 1000 20 5

 1 3000 20 8

 1 1000 40 4

 1 3000 40 10

 2 1000 20 6

 2 3000 20 9

 2 1000 40 4

 2 3000 40 9

Term Coefficient SE coefficient T P
Constant 6.750 0.339 19.941 0.000
A: Machine speed 2.125 0.239 8.878 0.003
B: Compression force –0.125 0.239 –0.522 0.638
AB 0.625 0.239 2.611 0.080
Blocks—2 0.250 0.479 0.522 0.638

Figure 10.1  Results for blocking experiment.
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to use them interchangeably because the terms are somewhat confusing. 
Let me explain, in practical terms, what each of these terms represents.

When we are doing repetitions	 in	DOE,	we	are	 actually	not	 repeat-
ing	anything.	What	we	are	doing	is	just	taking	more	than	one	sample	from	
each run. That is, for each combination of factor and level, we obtain more 
than one result. What is the advantage of this? With more than one datum, 
we can calculate descriptive statistics such as average, median, range, stan-
dard deviation, and so on. Out of these descriptive statistics, the measures 
of	dispersion	(range,	standard	deviation,	and	variance)	play	an	important	
role. Specifically, from each run we can calculate what is called short-term 
variability.	The	logic	is,	if	we	are	keeping	things	constant	within	a	run,	why	
would we see variability in the results? The answer is, because the variation 
is inherent in the process itself at that moment. Table 10.5 shows a repeated 
experiment. 

Notice	that	for	each	run,	two	samples	were	taken.	We	could	use	that	
information	to	calculate	the	measures	of	central	tendency	(average,	median,	
and	so	on)	and	the	measures	of	dispersion	(range,	standard	deviation,	and	
so on). Then, our experiment would not only be focused on hitting a target 
(for	instance,	the	nominal	value	of	the	specification),	but	also	on	reducing	
the	variation	(that	is,	obtaining	the	optimal	combination	of	factor	and	level	
that provides the smallest variation possible).

In contrast, when we change the conditions between each run, we will 
be able to calculate the long-term variability. When we do this, we are 
using replications within our experiment. In a replicated experiment, we 
are capturing the process variation in the long run. That is, we are also con-
sidering the effect of some factors that were not included in our experiment. 
What is the logic? If we run a certain combination of factor and level at 
some point, we might expect that the same combination could be run at any 
other time and the result would be the same or very similar. If that presump-
tion does not hold true, then there might be some other factors not consid-
ered that are influencing the response variable. In that case, we would need 

Table 10.5 Repetition in DOE.

 A: Machine B: Compression Hardness Hardness
 speed force 1 2

 1000 20 5 5

 3000 20 8 7

 1000 40 4 4

 3000 40 10 11
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to extend our experiment to include such factors. Table 10.6 shows an exam-
ple of a replicated experiment.

So, what is the best approach? To consider both repetition and 
 replication in our experiment. Table 10.7 shows an example where we con-
sider both.

Notice that repetition can be observed for each run. Two tablets were 
collected for each combination of factor and level. As mentioned, short-
term variability can be calculated from this approach. Replication can be 
observed	for	run	#1	and	#5	(1000,	20),	run	#2	and	#6	(3000,	20),	run	#3	
and	#7	(1000,	40),	and	run	#4	and	#8	(3000,	40).	Long-term	variability	can	
then be calculated.

Table 10.6 Replication in DOE.

 A: Machine B: Compression Hardness
 speed force 1

 1000 20 5

 3000 20 8

 1000 40 4

 3000 40 10

 1000 20 6

 3000 20 9

 1000 40 4

 3000 40 9

Table 10.7 Repetition and replication in DOE.

 A: Machine B: Compression Hardness Hardness
 speed force 1 2

 1000 20 5 5

 3000 20 8 7

 1000 40 4 4

 3000 40 10 11

 1000 20 6 5

 3000 20 9 9

 1000 40 4 4

 3000 40 9 10
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But what is the practical application of considering short-term and 
long-term variability in our experiments? One of the most common errors 
in experimental design is to focus just on hitting the target regardless of the 
variation. The best experiment would consider both. Let us imagine that the 
nominal	value	is	10	kp	for	the	average	tablet	hardness,	with	a	tolerance	from	
6	to	14	kp.	Suppose	that	one	combination	of	factor	and	level	resulted	in	an	
average	hardness	of	10	kp	and	a	standard	deviation	of	1.0	kp.	This	means	
that	99.73%	of	the	data	will	fall	between	7	and	13	kp.	However,	there	was	
another	combination	 that	 resulted	 in	an	average	hardness	of	11	kp	and	a	
standard	deviation	of	0.5	kp.	This	would	mean	that	99.73%	of	the	data	will	
fall	between	9.5	and	12.5	kp.	Which	combination	of	factor	and	level	would	
provide	the	more	consistent	product?	The	second	combination	(9.5	to	12.5	
kp),	of	course.	However,	if	we	had	just	focused	on	the	central	tendency,	we	
would have chosen the first combination.

Another way to see the impact of just focusing on central tendency is 
to calculate the capability indices for both scenarios. For the first combi-
nation	(average	=	10	kp,	standard	deviation	=	1.0	kp),	Cp will be 1.33 and 
Cpk also 1.33. This is not so bad, as we already mentioned in Section 7.3. 
But	what	would	be	the	capability	indices	for	the	second	combination	(aver-
age	=	11	kp,	standard	deviation	=	0.5	kp)?	The	answer	is	Cp	=	2.67	and	Cpk 
=	2.00.	Again,	which	combination	provides	the	best	result?	The	one	that	is	
somewhat off-target but with the smallest variation. In summary, the next 
time	you	perform	a	DOE,	remember	to	consider	both	descriptive	statistics	
 measures: central tendency and dispersion.

10.7 ExpErimEntal stratEgy

In Sections 10.3 and 10.4, I presented the concepts of full factorial and frac-
tional factorial experiments, respectively. The differences between these 
two types of experiments were explained in those sections. Advantages and 
limitations of each one were also explained. But when is it more appropriate 
to use each one of these types of experiments? The answer is related to the 
amount	of	knowledge	we	have	about	the	process	we	want	to	study.

When	the	process	knowledge	is	low	(because	it	is	a	new	process	or	it	has	
not been thoroughly studied), the best approach is to start with a fractional 
factorial experiment. In this way, we can experiment with many variables 
and	learn	more	about	their	effect	on	the	response	variable(s).	Just	remem-
ber	that	experimentation	is	sequential;	that	is,	we	will	apply	the	knowledge	
acquired in each experiment to subsequent experiments. Once our process 
knowledge	becomes	greater,	we	can	 then	start	using	 full	 factorial	exper-
iments. But, remember, one limitation with full factorial  experiments is 
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that the number of experiments becomes larger as the number of factors 
increases. So, our first full factorial experiments must not be replicated. 
At	this	point,	we	still	want	to	keep	the	number	of	runs	as	low	as	possible.

Once we are certain we have included the appropriate factors in our 
experiment	(at	the	appropriate	levels),	we	would	like	to	add	replications	to	
our experiments. In this way, long-term variability will be accounted for. A 
few full factorial replicated	experiments	will	help	us	make	certain	we	have	
considered all the significant factors and levels. Finally, a few validation 
runs would be appropriate once we have found the factors and levels that 
optimize	our	response	variable(s).

Following the approach outlined above, we can be confident that we 
are using the available resources in the most efficient way and we are con-
tinuosuly	expanding	our	process	knowledge.	

10.8 DEsign Of ExpErimEnts 
ExamplE: twO lEvEls,  

twO factOrs

Let me explain the concept of a two-level, two-factor full factorial experi-
ment with an example:

A company has been performing some experiments in order to 
optimize the hardness of a tablet. The specification for the tablet 
hardness	is	10	±	0.5	kp.	So	far,	the	company	has	acquired	much	
process	 knowledge	 through	 previous	 experimentation.	 	During	
this process, the company has performed fractional factorial and 
unreplicated full factorial experiments. The company has also 
experimented	with	center	points	and	blocks	to	rule	out	curvature	
and noise factors, respectively. At this point, a replicated full fac-
torial experiment will be performed.

The two factors that have been demonstrated to be more sig-
nificant throughout all the experimentation stages in the com-
pression process are machine speed and compression force. The 
levels to test in this experiment will be 1000 and 3000 rpm for 
the	machine	speed	and	20	and	40	kn	for	 the	compression	force.	
A replicated two-level, two-factor experiment was developed. The 
results are presented in Table 10.8.

Using statistical software, the results were analyzed. Figure 
10.2 shows the main effects plots for this experiment. How is the 
main effects plot analyzed? In the x-axis, you will find the two 
levels	for	each	factor	(1000	and	3000	rpm	for	machine	speed,	and	
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20	and	40	kn	for	compression	force).	In	the	y-axis, you will find 
the average tablet hardness at each level. The steeper the line, the 
more significant is that factor. When the line is completely flat, 
it does not matter which level you choose; the average response 
would be the same. In this example, in order to achieve an average 
hardness	of	about	10.0	kp,	the	machine	speed	should	be	set	at	3000	
rpm	and	the	compression	force	at	40	kn.	

But is the interaction between the machine speed and com-
pression force significant? That is, would selecting a different 
machine speed or compression force cause a difference in the 
response variable? Figure 10.3 shows the interaction plots for  
the experiment.

Table 10.8 Replicated full factorial design example for
 tablet hardness.

 A: Machine B: Compression Tablet
 speed force hardness

 3000 20 8.8

 1000 20 9.2

 3000 20 8.1

 1000 40 9.1

 3000 40 11.6

 1000 20 8.7

 1000 40 8.3

 3000 40 11.0

Figure 10.2  Main effects plots for tablet hardness example.
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How will we determine the strength of the interaction between 
machine speed and compression force? If the lines are completely 
perpendicular, there is a strong interaction; if the lines are com-
pletely parallel, there is no interaction. In this example, the lines 
are neither completely perpendicular nor completely parallel. 
However, the lines are closer to perpendicular than parallel; so, we 
can conclude that there is a strong interaction between machine 
speed and compression force. 

As mentioned earlier when analyzing the main effects plots, 
by setting the machine speed to 3000 rpm and the compression 
force	 to	40	kn,	we	achieve	an	average	hardness	of	about	10	kp,	
which is the nominal value. But what if, leaving machine speed at 
3000	rpm,	we	decide	to	set	compression	force	to	20	kn?	The	plot	
on the left side of Figure 10.3 shows that average hardness would 
drop significantly. The same will happen if we set the compression 
force	at	40	kn	but	set	the	machine	speed	at	1000	rpm,	as	shown	on	
the right side of Figure 10.3.

So, we can conclude that both the main effect factors and the 
interaction factors seem to be significant, based on these plots. 
However, as mentioned earlier, we can not rely only on the graphs 
to	make	a	conclusion	about	 the	 significance	of	 the	main	effects	
and interaction factors. So, we need to study the analytical portion 
of the experiment. Figure 10.4 shows the results obtained using 
statistical software.

Based on the results in Figure 10.4, at an alpha level of 0.05 
(α	 =	 0.05),	 we	 can	 conclude	 that	 both	 main	 effects	 (machine	
speed and compression force) and the interaction of those effects 

Figure 10.3  Interaction plots for tablet hardness example.
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are	significant.	More	information	about	when	to	reject	and	fail	to	
reject H0	is	provided	in	Appendix	D	for	the	most	commonly	used	
hypothesis tests.

10.9 summary

So far, we have been analyzing data that were previously collected. From 
that data, different evaluations have been perfomed: practical, graphi-
cal, and analytical. The tools studied so far have assisted us to get a better 
understanding	of	our	processes.	Now	we	want	to	use	that	knowledge	to	find	
the inputs and settings that will optimize the results, through an approach 
called	design	of	experiments	(DOE).

The	type	of	DOE	to	perform	will	depend	on	the	process	knowledge.	
When	 process	 knowledge	 is	 low,	 we	 will	 start	 experimenting	 with	 frac-
tional	 factorials.	 Then,	 as	 process	 knowledge	 becomes	 greater,	 we	 will	
experiment with full factorials. When using fractional factorials, the level 
of fractionalization is an important element to consider. We will select the 
level of fractionalization based on the resolution provided by each alterna-
tive.	Resolution	III	must	never	be	run;	resolution	IV	experiments	must	be	
used	with	caution;	resolution	V	and	above	are	recommended.

When performing full factorial experiments, we could start with 
unreplicated	 experiments.	 Then,	 as	 process	 knowledge	 becomes	 greater,	
we could add replicates in order to calculate the long-term variability. Also, 
repetitions could be added in order to calculate the short-term variability. 
Experimentation	 must	 not	 focus	 only	 on	 achieving	 a	 target,	 but	 also	 on	
reducing variation.

Term Coefficient T P
Constant 9.350 56.706 0.0000
A: Machine speed 0.525 3.184 0.0334
B: Compression force 0.650 3.942 0.0169
AB 0.775 4.700 0.0093

Figure 10.4  Factorial design analysis for tablet hardness example.
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11
Control Charts

11.1 Overview

In Chapter 3 the concept of process variation was introduced. The assump-
tion is that all processes are subject to some kind of variation. Two types 
of variation were defined: common cause variation and special cause vari-
ation. As mentioned in that chapter, common cause variation is always 
present in every process because no process is perfect. Common cause 
 variation is inherent in every process. In contrast, special cause variation 
is not always present in every process. This type of variation is caused by 
assignable events, that is, by certain things that have a significant impact 
on the process.

In Chapter 5 some graphical tools for analyzing data were presented. 
Tools like the histogram, box plot, dot plot, and Pareto diagram (among 
 others) were presented and discussed in that chapter. The major disadvan-
tage of those tools is that they represent the data in a static way. For instance, 
a histogram can help us describe the data in terms of central  tendency, dis-
persion, and shape. However, the histogram does not tell us anything about 
each individual value in terms of time. How could we obtain the advan-
tages of learning about central tendency, dispersion, and shape along with 
the advantages of learning how the process behaves over time? Simply by 
using a control chart.

Recall from Chapter 7 that there is something we call the process 
spread, also known as the voice of the process. The process spread is quan-
tified by the standard deviation, σ. Specifically, it is defined by the interval 
of ±3σ from the mean. As mentioned in Section 4.5, in a normal distribu-
tion about 99.73% of the data is expected to fall within ±3σ from the mean. 
So, we will use that fact in order to calculate what are called control lim-
its. In a control chart, the control limits define where the common causes 
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of variation are expected to lie. That is, as long as the  process is in statis-
tical control, all the points will lie within the control limits defined by the 
interval of ±3σ from the mean, without any nonrandom pattern, as will 
be studied later. When we see a point outside of those control limits (or 
points showing a nonrandom pattern), that indicates some sort of assignable  
or special cause that needs to be studied and corrected.

11.2 The raTiOnal SubgrOup

One of the most important concepts in control charting is the rational sub-
group. The success of the control chart will depend, in part, on the appro-
priate selection of the subgroup size. A rational subgroup is just a subset 
of a group intended to be as homogeneous as possible. In that way, we 
will be able to compare the variation within each subgroup and compare 
the  variation between subgroups over an extended period. But how do we 
 determine the appropriate subgroup size? That will depend on the process 
being studied.

Historically, many people use a subgroup size of 5 because it is very 
convenient for most manufacturing processes. However, a subgroup size 
of 5 is not always representative of the process. For instance, let us imag-
ine that we are studying a molding process. The mold has 10 cavities. In 
this case, it would be preferable to select a subgroup size of 10 instead of 
a subgroup size of 5. Why? Because the subgroup size of 10 will represent 
the variation of all the parts produced by that mold at a specific time. In 
that way, a control chart could be developed for that process and take, for 
instance, the 10 parts produced by the mold at a certain moment every hour. 
We could then compare the variation within each hour with the variation 
between hours to see if there are any significant differences in the long run.

11.3 nOnrandOm paTTernS

As mentioned earlier, if a process is in statistical control, all the points will 
lie within the control limits without showing any nonrandom pattern. But 
what are those nonrandom patterns we need to look for? Walter Shewhart 
developed a list of eight nonrandom patterns that might show that some-
thing is changing (or has changed) in the process. Every statistical software 
package has these eight tests, which may be applied individually or in any 
combination. Figure 11.1 shows the tests for nonrandom patterns to look for 
when analyzing control charts.
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Do we need to adjust our process every time we see one of these eight 
nonrandom patterns? Not necessarily. Recall from Chapter 7 that being out 
of control does not necessarily mean producing defective parts. If a pro-
cess is capable (that is, the process variation is narrower than the customer 
 specifications), and if a point falls outside of the control limits or the chart 
starts to show a nonrandom pattern, we might still have time to react before 
the process produces nonconforming parts. So, let me explain some of the 
possible causes of each of the eight nonrandom patterns in order to pro-
vide an idea of what steps could be taken to adjust the process before it is  
too late:

•	 Test 1—One point more than 3 sigma from centerline. This is 
typically what is called a special cause. It is a point produced by 
an assignable event, some sort of change that caused an extreme 
variation in the process. Some examples are change of material, 
change of supplier, change in methods, and so on. Using a  
fishbone diagram could help us identify the potential causes  
of this kind of situation.

•	 Test 2—Nine points in a row on same side of centerline. This is 
usually the result of a change in the process centering. Although 

Figure 11.1  Tests for nonrandom patterns in control charting.
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the process variation might have remained constant, the process 
has shifted toward one of the control limits. This type of pattern 
does not necessarily mean that something bad has happened. For 
instance, we might see a reduction in the average time to complete 
an investigation after a CAPA certification process if we see this 
kind of pattern. In contrast, we might see this pattern on a filling 
process if one or various nozzles become clogged. In any case, this 
is an indicator that something has happened, and it is a good time 
to analyze the desirability of such change.

•	 Test 3—Six points in a row, all increasing or all decreasing. This 
might be an indication of tool wear, machine deterioration, tired 
operator, and so on. It does not represent a sudden change in the 
process, but a slight and continuous change in it. This kind of 
pattern can be easily detected and acted on before it is too late.

•	 Test 4—Fourteen points in a row, alternating up and down. This  
is an uncommon pattern. This can be caused by overadjustment of 
the equipment or by manipulation of data. Special attention must  
be given to data integrity.

•	 Test 5—Two out of three points in a row more than 2 sigma from 
the centerline (same side). This pattern might be indicative of 
a sudden increase in the process variation. It is possible to have 
some points in this zone from time to time, but two out of three 
consecutive points is not desirable. The causes of this pattern might 
be similar to those of test 1; however, in this case the the event has 
not been so significant as to cause an out-of-control point.

•	 Test 6—Four out of five points in a row more than 1 sigma from 
the centerline (same side). This might be the beginning of the 
pattern depicted in test 5. Instead of a sudden increase in variation 
as in test 5, here we have a slight increase in variation that, if not 
acted on, can result in out-of-control points.

•	 Test 7—Fifteen points in a row within 1 sigma from the centerline 
(either side). This pattern is indicative that variation has been 
dramatically reduced. This might look like “too good to be true” 
or “do not touch the process.” The main problem here is that a 
variation reduction has been achieved, but the control limits have 
not been recalculated. Although a pattern like this might look  
good, it is not statistically correct. Remember that control limits  
are based on process variability. So, if variability decreases, then 
the control limits must be recalculated and become narrower.
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•	 Test 8—Eight points in a row more than 1 sigma from the 
centerline (either side). This is a very interesting pattern. It  
might be indicative of mixtures, that is, combining data from 
different processes in the same control chart. An example could  
be to have data from two different machines (each one with a 
different average) plotted on the same control chart. The solution 
could be to separate the data for each machine into different  
control charts.

The situations presented above are not intended to cover all the possible 
causes of variation; they are just some examples of what could be causing 
each of these nonrandom patterns. The person analyzing the control charts 
must study the process and find the real causes of such variation. It is also 
important to note that the previous eight rules apply to the variables con-
trol charts as they will be defined in Section 11.4. However, in the attributes 
control charts, only test 1 through test 4 will be applicable. That means test 
5 through test 8 will not apply to the attributes control charts. So, if you see 
one of these patterns in an attributes control chart, they will not be consid-
ered nonrandom patterns.

11.4 variableS COnTrOl  
CharTS and aTTribuTeS  

COnTrOl CharTS

In Section 4.2, the different types of data were presented: variable data, 
attribute data, and locational data. Out of those three types of data, the 
most used are the variable and attribute data. As mentioned in that section, 
variable data is continuous—data that can be measured. In contrast, attri-
bute data is discrete—data that can be counted, categorized, binary, and so 
on. Depending on the type of data at hand, we could use a different con-
trol chart.

One of the most common errors I have seen is the selection of the 
incorrect control chart. For instance, let’s say we want to plot the number of 
complaints received during each month. Since the number of complaints is 
data that can be counted (discrete), we must use an attributes control chart, 
in this case, a c-chart. Many times, I have seen the use of a variables control 
chart (like an individuals and moving range chart) to plot this type of infor-
mation. Other common errors I have seen in the use of control charts are:

•	 Wrong	formula	used	to	calculate	control	limits

•	 Missing,	poor,	or	erroneous	measurements
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•	 Data	on	charts	not	current

•	 Process	adjustments	have	not	been	noted

•	 Control	limits	and	average	not	updated

•	 Special-cause	signals	ignored

•	 Nonrandom	patterns	not	studied

•	 Specification	limits	placed	on	chart	instead	of	control	limits

Let me present the different types of variables and attributes control charts 
available, with some applications for each one.

11.5 variableS COnTrOl CharTS

As mentioned, the variables control charts will be used for continuous data, 
or data that can be measured. Most parameters in a manufacturing pro-
cess fit this type of data. The most commonly used variables control charts  
are the individuals and moving range (ImR) chart, X  and R chart, and X  
and s chart. Once we determine that our data are continuous, we need to 
decide which of these charts is the most appropriate. So, how do we deter-
mine which variables control chart to use? It will depend on the subgroup 
size, as mentioned in Section 11.2.

So, here are some hints about which chart to use. If the subgroup size 
is 1, then we will use the ImR chart; if the subgroup size ranges from 2 to 
5, then use an X  and R chart; if the subgroup size is greater than or equal 
to 6, then use an X  and s chart. Recall from Section 11.2 what is defined 
as a subgroup and what should be the appropriate subgroup size for each 
process. 

11.5.1 individuals and moving range Chart

Let us suppose that we want to plot the pH of a sample for a certain process. 
Each individual sample is collected in an individual bottle. Since the pH 
within the bottle will be the same (the sample is homogeneous), it does not 
make any sense to calculate the average of the sample at different locations 
in the bottle. Instead, one sample will be taken from each bottle and plot-
ted in an ImR chart. Figure 11.2 shows the data for 100 consecutive bottles.

The specification for this process is 7.0 ± 1.0. Although all the points 
are well within the specification limits, there are three points in the moving 
range chart that fall outside of the upper control limit. When each individ-
ual sample was analyzed, it was found that those out-of-control points were 
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the result of a sudden drop in sample #41 (from 7.08 to 6.71) and sample #56 
(from 7.19 to 6.73). However, since those individual values are well within 
the specification limits and those sudden drops did not happen again, it was 
decided that no changes in the process are required. A common error would 
have been to overreact to those individual values. Overreacting would have 
caused more points to lie outside of the control limits on both charts.

11.5.2 X  and R Chart

As mentioned earlier, when the subgroup size varies from 2 to 5, it is rec-
ommended to use the X  and R chart. This is one of the easiest charts to use 
because both metrics are very simple to calculate. What is the logic behind 
limiting the use of this chart to subgroup sizes from 2 to 5? Recall that in 
order to calculate a range, only two values are needed: the highest value and 
the lowest value. So, supposing that each value is different, here are the dif-
ferent scenarios for calculating the range:
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•	 For	a	subgroup	size	of	2,	both	values	will	be	used.

•	 For	a	subgroup	size	of	3,	two	values	will	be	used	and	one	 
value will be discarded.

•	 For	a	subgroup	size	of	4,	two	values	will	be	used	and	two	 
values will be discarded.

•	 For	a	subgroup	size	of	5,	two	values	will	be	used	and	three	 
values will be discarded.

For subgroup sizes of 6 and above, the range is not a good measure of pro-
cess dispersion because too many values will be discarded in the calcula-
tion. Instead, for such subgroup sizes, the standard deviation (or variance) 
is recommended because it uses all the individual values. Figure 11.3 shows 
the X  and R chart for the tablet weight process of a certain company. Each 
point in the X  chart represents the average of the weight of five tablets 
taken at a certain time, while each point in the range chart represents the 
range of those five tablets.
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It can be seen that the process is in statistical control, without any non-
random pattern.

11.5.3 X  and s Chart

Finally, when the subgroup size is 6 and above, it is recommended to use 
the X  and s chart. As mentioned, the range is an easy metric to calcu-
late because it is the difference between the largest and the smallest value. 
However, the standard deviation is somewhat more difficult to calculate. 
It requires the use of a statistical calculator or a spreadsheet. For that rea-
son, it is seldom used. However, remember that ease of use must not be the 
main consideration in deciding which chart to use; the main reason must 
be subgroup size. As subgroup size increases, we are inclined to use the X  
and s chart over the X  and R chart. Figure 11.4 shows the X  and s chart 
for a bottle weight process. The machine fills 10 bottles at a time; that is, it 
has 10 nozzles. Instead of considering each individual bottle’s weight, the 
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 company decided to monitor the average weight at certain specific times. 
So, an X  and s chart was developed.

It can be seen that the process is in statistical control, without any non-
random pattern.

11.6 aTTribuTeS COnTrOl CharTS

If data are discrete, the variables control charts mentioned earlier can not be 
used. Instead, we need to use the attributes control charts. The most com-
monly used attributes control charts are the p-, np-, c-, and u-charts. So, 
how do we determine which attributes control chart to use? It will depend 
on what we want to plot: defectives or defects. A defective unit is a unit 
that has at least one defect. In contrast, a defect is any characteristic that 
does not conform to the specifications. As opposed to the variables control 
charts, in which two charts are usually plotted on the same page (one chart 
for central tendency and another for dispersion), in the attributes control 
charts we only plot one chart at a time. So, what is the difference between 
the different types of attributes control charts?

The p-chart and np-chart are used for defectives. Specifically, the 
p-chart is used to plot the percentage defective, while the np-chart plots 
the number of defectives. On the other hand, the c-chart and u-chart are 
used for defects. Particularly, the c-chart is for number of defects, while 
the u-chart is used for average defects per unit. I will use Figure 11.5 to 
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Figure 11.5  Attributes chart example.
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 illustrate the difference between the different types of charts using the  
same data.

Each cylinder represents a single part. There are three subgroups, each 
of size 3. The “X” symbol within the cylinder represents a single defect. 
Figure 11.6 shows the calculated values for each of the four types of attri-
butes control charts for each of the three subgroups.

It can be seen that we can analyze the same data in different ways by 
using different control charts. It just depends on which information we want 
to present.

11.6.1 p-Chart

The p-chart is used to analyze the percentage defective in each sub-
group. As stated, it does not consider how many defects a unit might have;  
it considers the unit as defective if it has at least one defect. One important 
consideration for the p-chart (and for the u-chart, as will be presented later) 
is that subgroup size does not have to remain constant. The reason is that 
what we are plotting is the percentage of defectives, regardless of what the 
sample size of each subgroup is. For example, if we have one defective in 
a sample of three units, it will result in 0.33, or 33%, percent defective. On 
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Figure 11.6  Calculations for attributes charts example.
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the other hand, if we have three defectives in a sample of nine units, it will 
also result in 0.33, or 33%, percent defective. Let me explain the use of a 
p-chart with an example:

A company is performing an audit of their manufacturing batch 
records. They want to analyze what percentage of the batch records  
have any type of error, regardless of the number of errors or type 
of error. The reason is that any amount or type of error in the 
manufacturing batch record will render the product adulterated, 
as established in 21 USC §501. That is, the manufacturing batch 
record will be considered defective when it has at least one defect. 
Figure 11.7 shows the information for the records produced dur-
ing the past year.

As can be seen, the average percentage of manufacturing 
batch records with errors is 0.02, or 2%. The upper control limit is 
5% and the lower control limit is 0%. As long as all the data points 
are within those limits, there are only common causes acting on 
the process. When a data point falls above the upper control limit 
(5%, in this example), then special causes are acting on the pro-
cess. Please note that being within the control limits (between 0% 
and 5%, in this example) only means that the process is in statisti-
cal control. It does not mean that it is acceptable. For this process 
variable (percentage of manufacturing batch records with errors), 
the goal must be zero. This control chart could be the baseline for 
a process improvement project about manufacturing batch records 
error elimination.
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11.6.2 np-Chart

As mentioned, the p-chart is used to plot the percentage of defectives. Some-
times, we do not want to plot the percentage of defectives but the  number 
of defectives. The reason? Mathematically, three defectives out of 10 units 
is 30%; but 300 defectives out of 1000 units is also 30%. When dealing 
with devices such as pacemakers, for example, it is more important that 
you analyze number of defectives than percentage of defectives, especially 
if you are one of the people receiving the pacemaker. One disadvantage of 
using an np-chart instead of a p-chart is that for the np-chart the subgroup 
size must remain constant. If the subgroup size varies, and we want to plot 
defectives, then the p-chart must be used. Let us use the same data as for the 
example of percentage of manufacturing batch records with errors, but this 
time focus on the number of defectives instead of the percentage defective. 
Figure 11.8 shows the results for the records produced during the past year.

Recall from the previous example that the control limits just establish 
the boundaries within which the process is considered to be in statistical 
control; they do not represent what is considered acceptable. In this exam-
ple, having fewer than 9.86 defective units means that the process is in con-
trol. Again, as mentioned earlier, this control chart could be the baseline 
for a process improvement project about manufacturing batch records error 
elimination.

11.6.3 c-Chart

In Sections 11.6.1 and 11.6.2, I presented the attributes control charts for 
defectives. Recall that a defective unit is a unit that has at least one defect. 
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Monitoring the defective units might be good sometimes, but having knowl-
edge about the defects is also important. The c-chart is used to plot the 
number of defects in each subgroup. As with the np-chart, one disadvantage 
of the c-chart is that the subgroup size must remain constant. Let us illus-
trate the application of the c-chart with an example:

A company is performing an evaluation of the number of errors 
found in the manufacturing batch records. Although just one error 
makes the batch record defective, the team wants to analyze the 
number of errors in order to see the magnitude of the problem and 
start a project geared toward elimination of errors in the manufac-
turing batch records. Figure 11.9 shows the c-chart for number of 
errors in each batch record. The last 100 batch records were ana-
lyzed and plotted in sequential order.

It can be seen that as long as the number of errors in each 
batch record remains between zero and 9.98, the process is in 
control. But, recall from the previous control charts that having 
errors in the manufacturing batch records is unacceptable. Thus, 
this control chart can be used to set the baseline and monitor the 
improvement. The goal is to eventually eliminate the errors in  
the manufacturing batch records.

11.6.4 u-Chart

As mentioned, one disadvantage of the c-chart is that subgroup size must 
remain constant. But what if the sample size in each subgroup is different? 
In that case, if we want to plot information about defects, we need to use the 
u-chart instead of the c-chart. Let us suppose that the company produces 
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so many records that it is almost impossible to analyze all of them. So, they 
decided to take a sample of all records generated each week and plot the 
data for the average number of errors found each week. A subgroup of 10 
records was collected each week. The results are presented in Figure 11.10.

Each data point represents the average number of errors per batch 
record each week. Some records might have more than the average, while 
others might have less than the average. As mentioned earlier, in the FDA-
regulated industry, the target must be zero defects. So, this control chart 
should be used to set a baseline to monitor the improvement over time.

11.7 Summary

Most of the graphical tools studied so far focus on looking at the central 
tendency, dispersion, and shape of the distribution. They also focus on mak-
ing comparisons between various groups. However, none of them consider 
when each of the data points were collected. Time is an important consider-
ation in every process. So, plotting the data as they are being collected can 
assist us in taking action before any major problem arises.

In previous chapters, we presented different types of data: attribute, 
variable, and locational. So, when plotting data in a control chart, one of 
the first issues to consider is which chart to use. For variable data, some 
of the most commonly used charts are the individuals and moving range 
(ImR) chart, X  and R chart, and X  and s chart. The criterion for selecting 
the apropriate variables chart will be the subgroup size. On the other hand, 
for attribute data, the most commonly used charts are the p-, np-, c-, and 
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u-charts. The criterion for selecting the appropriate attributes chart will be 
whether we want to plot data for defectives or for defects.

When analyzing control charts, one of the aspects we will consider  
is the randomness of the data. There are eight rules for determining whether 
the process is exhibiting a random pattern or if there are special causes 
acting on the process. As long as all the data points are within the control 
limits, without any nonrandom pattern, we can say that the process is in sta-
tistical control; said differently, only common causes of variation are pres-
ent. However, when there are data points outside of the control limits, or 
some nonrandom pattern is seen, we say that the process is out of statistical 
control. In this case, we have a combination of common causes and special 
causes of variation present in the process. Special causes must be identified 
and eliminated, while common causes can be reduced.

Statistical process control is a requirement for all the tests discussed in 
this book. So, although control charting was the last tool discussed, it will 
be one of the first tools to be used prior to any other analysis.
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12
Final Thoughts

12.1 Overview

Throughout the preceding chapters, I have presented several tools to 
achieve process control in an organization regulated by the Food and Drug 
Administration (FDA). The book started by establishing the regulatory 
importance of statistical process control. The differences among regula-
tions, guidances, and international standards were established. Then, some 
examples of the use (and misuse) of statistical tools, as evidenced by obser-
vations given by the FDA to several organizations, were presented.

The concept of process variation is an important topic in any manu-
facturing environment. Thus, understanding the difference between com-
mon causes of variation and special causes of variation, along with the basic 
principles of statistics, must be one of the first topics to include in any qual-
ity improvement endeavor. Our process knowledge can be enhanced by the 
use of graphical tools; many of them, along with specific examples of their 
application in an FDA-regulated organization, were presented throughout 
the book.

It is important to recognize that, prior to starting to collect informa-
tion, we must make certain that our measurement system is reliable; that is, 
the measurement process is not adding more variation than the manufactur-
ing process does. Once we have optimized our measurement system, then 
an assessment of the overall process variation versus the customer speci-
fications must be performed in order to learn how capable our processes 
are. Then, hypothesis tests can help us understand the statistical differences 
between various groups, as well as the relationship between the variables 
that might have an impact on the process. However, no process improve-
ment effort is comprehensive without the use of experimental design; that 
is, in order to find which are the factors that impact our key output vari-
ables (and which are the appropriate settings of those factors), some sort of 
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 systematic experimentation must be executed. It is important to recognize 
that experimentation is a continual process: with each additional experi-
ment we will gain more process knowledge. Finally, but not less important, 
we need to continually monitor our processes, not only the process outputs 
but also the key process inputs. An excellent tool for continuously monitor-
ing processes is the control chart. These charts must be used on a perpetual 
basis, not a “once-a-month” or “once-a-year” basis. Control charts will be 
one of the cornerstones of any process control system.

12.2 Order OF TOOls

Throughout the book, many process improvement tools have been pre-
sented. I have made an attempt to present the tools in the specific order in 
which they must be implemented. Most of the improvement tools have been 
explained throughout the book; others have not been explained but can be 
found in many quality tools textbooks. What follows are, based on my expe-
rience, some of the recommended tools in any quality improvement effort, 
along with the order in which they must be applied.

Every improvement project must start with a project charter. This is a 
living document in which the details of the project are established. Topics 
such as project title, purpose, scope, goals, milestones, required resources, 
and so on, are agreed on by the person requesting the project and the per-
son executing it. The charter must be updated as the project progresses. 
Once the project is defined and the team is organized, the data measure-
ment process must begin. Some of the tools that can be used at this time 
are gage R&R, process capability analysis, histograms, box plots, dot plots, 
Pareto diagram, scatter plots, run charts, and others. What we are trying to 
accomplish in this part of the project is to gain some process understand-
ing through the use of many graphical tools. Remember from Chapter 5 that 
each graphical tool has its specific objective.

As we progress through our process knowledge continuum, certain 
hypotheses are gradually developed. Graphical tools alone are not enough 
to prove those hypotheses; some sort of analytical evaluation must be per-
formed. Hypothesis tests such as normality, equality of means, equality 
of medians, equality of variances, correlation between variables, statistical 
significance of factors, and so on, are appropriate at this stage. Just remem-
ber that most of these hypotheses are developed with already collected data. 
Because of that fact, the next logical step is to experiment in a system-
atic way. Recall from Chapter 10 that experimentation is sequential; do not 
expect to solve all your issues with a single experiment. Be prepared to 
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develop and perform many experimental designs to achieve a better under-
standing of the process.

And remember, throughout the project (not only at the end of it), moni-
tor your process with graphical tools such as the control chart. Realize that 
control charts are not only used to decide when to stop your process and 
take some action; control charts are the heart of any continuous quality 
improvement endeavor.

12.3 COnTinuOus PrOCess 
MOniTOring versus OnCe-a-Year 

analYsis and rePOrTing

Most pharmaceutical companies that I have consulted for during the past 
few years collect some sort of quality-related data on a lot-by-lot basis. 
However, just a few of them use the data to make decisions on a timely 
basis. My opinion is that those companies are reading the regulations in a 
literal manner. For instance, section 211.180 of 21 CFR §211 establishes the 
need for an annual product review (APR) for pharmaceutical companies. 
Specifically, it states that:

Written records required by this part shall be maintained so that 
data therein can be used for evaluating, at least annually, the 
quality standards of each drug product to determine the need for 
changes in drug product specifications or manufacturing or con-
trol procedures.1

As noted in 21 CFR §211.180(e), the pharmaceutical regulations establish 
that records shall be analyzed at least annually. However, as mentioned 
in Section 1.3, while regulations are legally enforceable, guidances rep-
resent the agency’s current thinking on certain topics. They serve to fill 
the gaps in the interpretation of the regulations. Particularly, the Guidance 
for Industry: Quality System Approach to Pharmaceutical Current Good 
Manufacturing Practices establishes:

Quality systems call for continually monitoring trends and improv-
ing systems. This can be achieved by monitoring data and infor-
mation, identifying and resolving problems, and anticipating and 
preventing problems.

Quality systems procedures involve collecting data from 
monitoring, measurement, complaint handling, or other activities, 
and tracking this data over time, as appropriate. Analysis of data 
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can provide indications that controls are losing effectiveness. The 
information generated will be essential to achieving problem reso-
lution or problem prevention (see IV.D.3.).

Although the CGMP regulations (§211.180(e)) require prod-
uct review on at least an annual basis, a quality systems approach 
calls for trending on a more frequent basis as determined by risk 
[emphasis added]. Trending enables the detection of potential 
problems as early as possible to plan corrective and preventive 
actions. Another important concept of modern quality systems is 
the use of trending to examine processes as a whole; this is consis-
tent with the annual review approach. Trending analyses can help 
focus internal audits (see IV.D.2.).2

Also, recall from Section 1.2 that regulations are the minimum require-
ments; that is, although the regulations establish at least a yearly basis 
for data analysis and process improvement, we must be more stringent 
than what the regulation establishes. In essence, we want to switch from 
a  reactive mode to a proactive mode in order to prevent problems before  
they occur.

12.4 PrOaCTive Or reaCTive?

As mentioned earlier, if we want to continuously improve our processes, we 
need to change one of the biggest paradigms we face every day: “If it’s not 
broken, don’t fix it.” Oftentimes, people do not react until it is too late. As 
established in Section 3.1, we need to stop thinking that as long as our pro-
cess is within the specification limits, nothing has to be done. Let me illus-
trate this concept with an example:

A company is gathering data for their APR to determine whether 
changes have to be made to their process controls. One of the key 
process variables they measure is tablet hardness. The specifica-
tion for that variable ranges from 4.0 to 11.0 kp. A control chart 
is developed in order to understand how that key process variable 
performed during the previous year. Figure 12.1 shows the indi-
viduals control chart for tablet hardness.

The argument presented in Figure 12.1 is the following: should we take 
action on those points outside of the control limits? Some people might say 
yes, while some people might say no. Those people that say some action 
must be taken will probably do so based on what we discussed in Chap-
ter 11. Whenever a data point is outside of the control limits (or the chart 



 
Fin

al Th
o

u
g

h
ts 

 
151

Figure 12.1  Individuals control chart for tablet hardness example.
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is exhibiting a nonrandom pattern), that situation is being generated by an 
assignable, or special, cause. As mentioned, a special cause is something 
that must be investigated because it is not the inherent variation of the pro-
cess (common cause) that is acting on the process, but a situation caused 
by some external factor. However, there will be other people who might say 
that since the process is still within the specification limits, nothing has to 
be done yet.

The situation presented above clearly demostrates the difference 
between two ways of thinking: proactive and reactive. As mentioned, if 
we want to continuously improve our processes, we need to switch from a 
reactive mode to a proactive mode. Before going further, let us see what the 
regulations establish on this topic. For instance, the regulation related to 
medical devices states that:

(a) Each manufacturer shall establish and maintain proce-
dures for implementing corrective and preventive action. The pro-
cedures shall include requirements for:

(1) Analyzing processes, work operations, concessions, qual-
ity audit reports, quality records, service records, complaints, 
returned product, and other sources of quality data to identify 
existing and potential causes of nonconforming product, or other 
quality problems. Appropriate statistical methodology shall be 
employed where necessary to detect recurring quality problems;3

It can be noted that the medical device regulation explicitly mentions  
the need for corrective and preventive actions. Furthermore, it mentions the 
need to identify existing and potential causes of nonconforming product. 
So, if we take a look at Figure 12.1, it is true that it is not showing an exist-
ing nonconformance because it is still within the specification limits. How-
ever, it shows a potential nonconformance that must be addressed before it 
is too late. A reactive company would not do anything at this point, while a 
proactive company would investigate to find the cause of that potential non-
conformance before a failure occurs. Which type of company is yours—
reactive or proactive?

We have analyzed the regulation concerning medical devices. How-
ever, what happens in the finished pharmaceutical products arena? The reg-
ulation for finished pharmaceutical products establishes that:

All drug product production and control records, including those 
for packaging and labeling, shall be reviewed and approved by 
the quality control unit to determine compliance with all estab-
lished, approved written procedures before a batch is released or 
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distributed. Any unexplained discrepancy (including a percent-
age of theoretical yield exceeding the maximum or minimum per-
centages established in master production and control records) or 
the failure of a batch or any of its components to meet any of its 
specifications shall be thoroughly investigated, whether or not the 
batch has already been distributed. The investigation shall extend 
to other batches of the same drug product and other drug products 
that may have been associated with the specific failure or discrep-
ancy. A written record of the investigation shall be made and shall 
include the conclusions and follow-up.4

It is clear that the regulation on finished pharmeceutical products estab-
lishes that “any unexplained discrepancy must be thoroughly investigated.” 
So, unless your company knows the causes for those out-of-control data 
points and has taken action to eliminate the possibility of those causes 
acting again in the process, an investigation must be enforced. Again, a 
reactive company would not do anything at this point, while a proactive 
company would investigate to find the cause of that unexplained discrep-
ancy before a failure occurs. Which type of company is yours—reactive or 
proactive? In any case (medical devices or finished pharmaceutical prod-
ucts), what do we call the actions taken to avoid this pattern repeating again 
in the future—corrective actions or preventive actions? In essence, those 
would have to be called preventive actions because no failure has occurred 
yet. More information about the difference between corrective and preven-
tive actions can be found in the book CAPA for the FDA-Regulated Indus-
try, by José Rodríguez-Pérez.5

12.5 nexT sTePs

Now that I have stressed the importance of being proactive instead of reac-
tive, it is time to begin our journey through the quality improvement of our 
processes. I hope this book has fulfilled your expectations. As mentioned 
in the Preface, my goal was not to teach an intensive course in statistics, but 
to provide a how-to guide for the application of the diverse array of statisti-
cal tools available to analyze and improve the processes in an organization 
regulated by FDA. I hope that through your reading of this book you have 
obtained a better understanding of some of the available statistical tools for 
controlling the processes in your organization. Finally, I encourage you to 
study, with a greater level of detail, each of the statistical tools presented 
throughout the book.
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Appendix A
Variable and Attribute  

Data Applications

Many times, we are not certain about which type of tool to apply for a spe-
cific situation. For instance, we want to develop a control chart but do not 
know which one is the most appropriate for the type of data at hand. The 
same doubts could be generated when deciding which distribution to use 
for the analysis of data. The following table shows a non-exhaustive list of 
some of the tools applicable to variable or attribute data.

Table A.1 Variable and attribute data applications.

 Variable data Attribute data

Characteristics Measurable Counted
 Continuous Discrete
  Categories
  Binary

Examples Temperature Number of defects
 Length Percent defective units
 Time Pass/fail
 Speed Go/no-go

Control charts X
–
 and R p-chart

 X
–
 and s np-chart

 ImR c-chart
 Medians chart u-chart

Distributions Normal Poisson
 Exponential Binomial
 Weibull Hypergeometric
 Lognormal

Sampling plans ANSI/ASQ Z1.9 ANSI/ASQ Z1.4

Measurement instruments Caliper Plug gage
 Micrometer Ring gage
 Scales Pin gage
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